GAMECONF formal specification 0.99.1

While there are ways to define how a Doom mod should be set up, a way of explicitly
defining the correct way to set up the engine (including IWADs) does not exist outside of
specialised functionality in a handful of ports. This specification documents a data format
used to configure a Doom session to run a mod successfully and eliminate confusion from
the user end.

JSON lump
This specification uses the JSON Lump 1.0.0 formal specification as the root of its data
storage, with a type of “gameconf” and a version of “1.0.0".

Minimum engine featureset
This specification applies to any limit-removing featureset or greater. While it is optional for
other valid featuresets, it is a requirement of the ID24 featureset.

Resolving GAMECONF lumps
Each IWAD and PWAD is allowed to have a GAMECONF lump. These are loaded and
resolved in the following order:

e The default IWAD
e Each PWAD listed in order via the -£ile command line parameter (or equivalent)

Most values inside GAMECONF lumps are considered to be destructive, ie they overwrite
values previously defined by another GAMECONF. However, PWAD files are considered
additive, ie they add to an array of files to resolve by the engine later; options are considered
additive; while the executable and mode values are resolved via a maximum operation.

Every value inside a GAMECONF definition is allowed to be null. This indicates that values
defined by a previous GAMECONF lump are not to be altered.

Note that for the purposes of resolving GAMECONF lumps, you must only resolve the
IWADs and PWADs defined by the user before engine initialisation. As such, any
GAMECONF lump defined by a PWAD is expected to define every value it needs for
functioning in a valid manner. Additional IWADs and PWADs defined by a GAMECONF are
not to be parsed.

After GAMECONF lumps have been parsed, the engine will have an IWAD and a list of
PWADs that it should then load and initialise for the game to continue in the usual manner.

Supported engine versions

Doom engine versions are supported in an additive manner, ie starting with the base feature
level set of Doom 1.9 and turning on features the higher version you go. The current
supported engine version for the version field, starting from the least features and
continuing through to most features, are:

e dooml.9 - Equivalent to the final DOS retail releases of The Ultimate Doom, Doom I,
and Final Doom.

e 1limitremoving - Certain limits removed to stop crashes and memory overwrites;
includes a select few line actions from Boom that only affect visual features and do
not break demo compatibility.

e bugfixed - A limit removing mode that fixes well known bugs that outright break

demo compatibility with doom1.9.

boom2.02 - The Boom feature set as originally released in 1998.

complevel9 - Sky transfers from MBF, MUSINFO, longtic demos, and a few other

bits and bobs that do not exist in Boom 2.02 but are generally accepted by the

community to mean “Boom compatible”.

mbf - The MBF 2.03 feature set as released in 1999.

mbfextra - Everything from mbf plus DEHEXTRA.

mbf21 - The MBF21 feature set as released in 2021.

mbf21ex - Everything from mbf21 plus DSDHACKED.

id24 - The featureset described by this group of specifications.

Any source port not implementing any of those feature sets should error when encountering
an unknown featureset. Any feature set not defined here is not considered part of the
specification, and encountering any value but the above is to be considered an error
condition.

Limit removing ports are allowed to upgrade doom1.9 to 1imitremoving on load. They
should not upgrade the version any higher in order to retain the functionality expected by the
mod author.

Supported modes

The Doom engine, and certain specifications such as UMAPINFO, alter their behavior based
on the game mode. This is usually defined by the name of the IWAD. However this is not
suitable for custom IWADs; and for mods using a lower feature set there may be no other
valid way of altering the engine’s behavior.

The three modes supported, from lowest value to highest, are:

e registered - Doom with 3 episodes
e retail - Doom with 4 episodes
e commercial - Doom Il with maps 1-32 and all additional enemies and items

Note that while shareware is a supported mode inside the Doom source code, this is only a
valid method for the original distribution model of shareware Doom. Mod authors can tailor a
“demo” version of their mods in a far more flexible fashion with modern tools and features.
As such, encountering shareware or any other value not defined above is to be considered
an error condition.

IWADs

IWADs defined on the command line, or determined by the engine, are to be considered
default values. If any GAMECONF lump encountered defines a different IWAD, it will
overwrite this default and that original IWAD will not be loaded by the game. This must be
the name of a file without any additional path info. Defining a path, be it relative or absolute,
is considered an error condition.

PWADs
PWADs defined by the end user need special consideration when building a full PWAD list to
load. The list is constructed in the following way:

e For each PWAD declared
o Add to the new PWAD list
o Check the PWAD for a valid GAMECONF
o If avalid GAMECONF is found
m Add each PWAD defined in the GAMECONF lump to the new PWAD
list

This results in a PWAD with a GAMECONF lump having its supporting PWADs loaded in the
correct order as it expects.

As with IWADs, defining a path for a PWAD is considered an error condition.

Player translations

The playertranslations field allows a mod to override the built-in translation tables
defined for player sprites. The order of this table is equivalent to the player number. As such,
any less than four entries in this table is to be considered an error condition.

Each encountered GAMECONF lump with a valid player translations entry will completely
overwrite this array. Any mod that wants to define player translations should do so in an
explicit and complete manner.

Options

The existence of the OPTIONS lump outright indicates an mbf-minimum featureset.
However, there are a few compatibility options that you will want to configure for lesser
feature sets. The options field serves this purpose, by allowing you to set compatibility
options that satisfy the minimum feature set requirement.

All normal options configurable by the OPTIONS lump are available to the user. The options
you are allowed to set are limited by the version the user specifies. If an option is declared
that exists outside of the defined version, it is ignored.

As options are additive, they will accumulate for each encountered GAMECONF lump and
will always resolve in that order.

Options defined by the MBF standard are limited to MBF-minimum versions; while options
defined by the MBF21 standard are limited to MBF21-minimum versions. The following
exceptions apply:

Option Minimum Reason
version
comp_soul doom1.9 Lost soul bouncing changes

behaviour between Doom and Doom
II. Allow explicit controlling of this for
dooml.9 versions.

comp_finaldoomteleport doom1.9 Option did not previously exist; allows

Final Doom teleport behavior without
needing to define a special version.

comp_moveblock

mbfextra

Previously undefined by any
standard; exists in prBoom and is
being retroactively applied to the
mbfextra feature set.

comp musinfo

complevel9

Previously undefined by any
standard; an optional feature that
became expected of complevel 9
thanks to prBoom. Defaults to true on
complevel9 and higher; false
otherwise

comp thingfloorlight

boom2.02

Previously undefined by any
standard; controls whether things are
lit by the sector’s floor lighting or the
sector’s normal lighting. Defaults to
true in complevel9 and higher; false
otherwise.

Note that all new options described above can also be parsed by the OPTIONS lump.

Title, author, description, and version
These fields are descriptors for the given WAD a GAMECONF is describing. These are
effectively cosmetic as far as the game is concerned; they are however useful fields for

frontend/Ul/tools purposes.

Data type definitions

root
Name Type Description
title string The name of this mod. Can be null.
author string The authors of this mod. Can be null.
description string A description of this mod. Can be null.
version string The release version for this mod. Can be null.
iwad string The filename of the IWAD this mod should use as
its base. Can be null.
pwads array of | Alist of additional PWADs to load for this mod to
string function correctly. Can be null.
playertranslations | array of A list of translations to use for player sprites. Can
string be null.
executable string The feature set this mod requires to run. Can be

null.

mode string Which mode this mod should run in. Can be null.

options string A string representing options to set. Uses the
JSON string convention of newlines being
represented as the \n linebreak. Can be null.

Reference implementation details

By default, the game will run in limit-removing mode instead of ID24 mode. It's demonstrably
true that most content authored for Doom and Doom Il will not be using the 1D24 feature set,
so it makes no sense for that to be the default mode for the game to run in. Due to needing
to remove undefined behavior, limit-removing is the default as that accounts for fixing the
various array overflows that the original Doom and Doom |l releases were prone to.

From here, features get turned on as requested and as proven by the data itself.

GAMECONF forms a core part of how the feature level of a session is determined. While it is
considered the authoritative way for how to set a feature level for the session, an analysis
path to determine the true feature set exists.

The flow for how a session is set up at a feature and a data level is as follows:

e For each IWAD and PWAD passed to the game session
o Load the WAD directory
o Search for and parse GAMECONF as defined above
o Unload the WAD directory
e For each IWAD and PWAD obtained from the GAMECONF pass
o Load the WAD directory
o Search for and parse a DEHACKED lump
e Load any available map info definitions in the following order of preference:
o UMAPINFO
o DMAPINFO
e Determine current session feature level by the maximum value encountered from the
following checks
Current gameconf declared level
DeHackEd maximum encountered features
Feature level found in COMPLVL lump
Feature level defined by DEMOX lumps
Feature level of Boom 2.02 if ANIMATED, SWITCHES, C_BEGIN, or C_END
lumps are found
Feature level of MBF if OPTIONS lump is found
For each map
m Maximum feature level of encountered line special, sector special, and
thing encountered
Unload every WAD directory
Ensure all features required by the determined feature level are enabled or disabled
according to spec

O O O O O

e Load extras.wad
If ID24 feature level, load id24res.wad
e Load each IWAD and PWAD defined by the current gameconf

In the case of linedef specials, while it is well defined which line special belongs to which
standard the Boom line special number 85 - which is undefined in vanilla - is treated as limit
removing. Some mapsets that were authored to be vanilla-compatible in the 90s and early
00s used this special to improve the presentation in Boom-compatible ports, and the
autodetect path incorrectly elevates the feature level to Boom thanks to this one linedef. As it
is a texture scroller and has no impact on the simulation, it is considered a limit-removing
line.

In the case of thing flags, the Boom “not in deathmatch” and “not in coop” flags are not
tested for similar reasons as the linedef special number 85.

The MBF reserved thing flag is respected and limits thing flag checks to those defined in
vanilla Doom if encountered. A similar flag (0x0800, 2048, 1 << 11) is used for linedef flags
for the same justifications provided in the MBF specification for thing flags.

