
‭SBARDEF formal specification 0.99.1‬
‭A way of defining custom status bar layouts has not existed in most Doom source ports. This‬
‭specification documents a data format and corresponding features that replicates and‬
‭expands Doom’s status bar rendering functionality.‬

‭Scope of features‬
‭This specification has been written to replicate the Doom and Doom II: Hell on Earth status‬
‭bar, while expanding its abilities to handle rendering as a full screen overlay. Very little has‬
‭been added to the featureset that extends beyond these requirements.‬

‭JSON lump‬
‭This specification uses the JSON Lump 1.0.0 formal specification as the root of its data‬
‭storage, with a type of “‬‭statusbar‬‭” and a version‬‭of “‬‭1.0.0‬‭”.‬

‭Minimum engine featureset‬
‭This specification applies to any‬‭limit-removing‬‭featureset‬‭or greater. While it is optional for‬
‭other valid featuresets, it is a requirement of the‬‭ID24‬‭featureset.‬

‭Only one lump‬
‭Status bars are expected to be defined with the‬‭SBARDEF‬‭lump. If this lump does not exist,‬
‭then the original behaviour for status bars is to be used. For WAD resolution purposes, this‬
‭lump follows the standard rules and resolves to the last lump found in the WAD dictionary‬
‭with that name.‬

‭As there is only one lump, any custom status bars are expected to redefine an entire status‬
‭bar chain and not just redefine the bar they are interested in.‬

‭ID24 weapons‬
‭To properly support ID24 weapons, id24res.wad contains a SBARDEF lump that adds‬
‭weapon slots 8 and 9 to the status bar arms section. As a source port should load that WAD‬
‭when ID24 compatibility is enabled, the status bar will be completely ready for a user to‬
‭enjoy the new weapons with.‬

‭Runtime environment‬
‭Status bars‬‭are to be rendered in a virtual 320x200‬‭resolution when in fullscreen mode‬
‭(referred to as the virtual environment), presented at a 4:3 aspect ratio with rectangular‬
‭pixels at a 1:1.2 aspect ratio (ie 1.2 vertical units are required to maintain the 4:3 aspect‬
‭ratio). This is identical to the original Doom and Doom II presentation. The virtual resolution‬
‭is enforced to allow equivalent presentations at any actual device output resolutions.‬

‭As non-fullscreen statusbars specify their height, the virtual resolution becomes‬‭320 x‬
‭<statusbar height>‬‭. While coordinates are specified‬‭with a (0,0) origin representing the‬
‭top-left corner of the status bar, the bar itself is rendered to the screen using a virtual Y‬
‭coordinate of‬‭200 - <statusbar height>‬‭.‬

‭Resources are allowed to render outside of the virtual environment. This allows for the‬
‭presentation to adapt to widescreen aspect ratios.‬



‭Elements are‬‭not allowed‬‭to specify coordinates outside of the virtual environment.‬
‭Elements are allowed to extend outside of the virtual environment and will be clipped‬
‭appropriately to the output resolution, but placement of elements must be inside the virtual‬
‭environment.‬

‭Update rate‬
‭Any logic that a status bar element requires to run (such as updating animations) must run at‬
‭the same tic rate as the game simulation (35Hz). Rendering can be handled independently‬
‭of framerate.‬

‭Selecting status bars to render‬
‭Selection of which status bar to render is to be handled by expanding the definition of the‬
‭screenblocks value. In the original Doom codebase, values 0 to 10 define how to scale the‬
‭3D first-person viewport, while value 11 indicates full screen rendering. Under this new‬
‭system, assuming zero-indexing of an array the index of a status bar to render is obtained‬
‭with the following formula:‬

‭barindex = Max( screenblocks - 10, 0 );‬

‭Ports that do not allow selecting screenblocks above 11 should take care to further clamp‬
‭that value to a maximum of 11.‬

‭Scaling status bars to differing aspect ratios‬
‭A rendering target aspect ratio of less than 4:3 is treated differently for fullscreen and‬
‭non-fullscreen status bars:‬

‭●‬ ‭For fullscreen and non-fullscreen status bars, compact mode resolves to true and the‬
‭status bar definition can provide an alternative layout.‬

‭●‬ ‭For non-fullscreen status bars, the bar is scaled down in both X and Y axes until the‬
‭entire 320 virtual width of the bar fits on the screen.‬

‭The 3D viewport is expected to adapt to the scaling of the status bar.‬

‭A rendering target aspect ratio of greater than 4:3 has no effect on fullscreen statusbars. For‬
‭non-fullscreen status bars, the extra columns on either side of the status bar are filled with a‬
‭flat that is either defined by the status bar itself; or equivalent to the border graphic used in‬
‭each game (FLOOR7_2 for Doom; GRNROCK for Doom II). This must be rendered using‬
‭the virtual 320x200 space and not the native render resolution, with the top left corner of the‬
‭flat occupying the‬‭(0, 200 - <statusbar height>)‬‭position.‬

‭Status bar number fonts‬
‭Status bar number fonts exist exclusively to represent numbers. They do not handle any‬
‭other glyphs outside of the minus and percentage symbols.‬

‭A number font uses standard Doom patches to render its glyphs.‬

‭The glyphs for numbers 0 through 9 must be resolvable from the WAD dictionary. If a minus‬
‭or percentage glyph is not defined, it is simply ignored.‬

‭A number font can have one of the following types:‬



‭●‬ ‭0 - mono spaced, based off the width of the 0 glyph (default for Doom and Doom II)‬
‭●‬ ‭1 - mono spaced, based off the widest glyph‬
‭●‬ ‭2 - proportional, each glyph takes exactly its width‬

‭Monospaced fonts render at the cursor position and increment the cursor by the defined‬
‭width, giving the impression of gaps on the right side of each glyph for glyphs that are‬
‭narrower than the monospace width.‬

‭Status bar elements‬
‭Status bar elements are hierarchical in nature. They exist in a transform tree, where child‬
‭elements inherit the transform of their parent. The only values that are currently considered a‬
‭part of the transform are the X and Y position values.‬

‭Status bar elements can define an alignment. This exclusively controls how the elements it‬
‭renders are positioned from the transform. It does not affect the transform for child items.‬
‭The default of top and left renders the top-left corner of its element at the defined transform;‬
‭bottom and right renders the bottom-right corner of its element at the defined transform;‬
‭while the middle values for both horizontal and vertical render the middle of its element at‬
‭the defined transform. One horizontal and one vertical alignment is allowed to be defined per‬
‭element.‬

‭Each element is capable of containing any number of child elements.‬

‭Each element can render with or without a transparency map and a translation. The‬
‭transparency map is a lookup table as defined by the Boom specification; while a translation‬
‭is defined by the ID24 Translation formal specification.‬

‭Element types‬
‭The following element types exist for status bar definitions to use:‬

‭●‬ ‭Canvas‬
‭●‬ ‭Graphic‬
‭●‬ ‭Animation‬
‭●‬ ‭Face‬
‭●‬ ‭Face Background‬
‭●‬ ‭Number‬
‭●‬ ‭Percentage‬

‭At the data definition level, each element must contain at least one definition for an element‬
‭type. Only the first entry in an element is considered. Any other element types are simply‬
‭ignored and not parsed. Editors as such only want to save out the data required for the‬
‭current element type rather than defining separate entries for each type.‬

‭Canvas element‬
‭A canvas element is an empty element that exists as a container for children elements.‬

‭Graphic element‬
‭A graphic element renders the defined patch at the transform’s location.‬



‭Animation element‬
‭An animation element sequentially displays the defined patch at the transform’s location.‬
‭Each frame has a duration which defines the minimum amount of time it must be rendered‬
‭for.‬

‭Face element‬
‭A face element is the portrait that animates and renders in the middle of Doom and Doom‬
‭II’s original status bars. Only the face is rendered with this element; its background is‬
‭handled separately.‬

‭Face Background element‬
‭A face background element renders the background patch as retrieved from the current‬
‭player’s translation definition.‬

‭Number element‬
‭A number element renders the specified number, including its negative values if the specified‬
‭font has a minus glyph defined.‬

‭Percentage element‬
‭A number element renders the specified number with a percentage glyph on the right-hand‬
‭side of the number, including its negative values if the specified font has a minus glyph‬
‭defined.‬

‭Number types‬
‭The following types of numbers can be resolved by a Number and Percentage element via‬
‭the‬‭type‬‭field:‬

‭●‬ ‭0 - current player’s health‬
‭●‬ ‭1 - current player’s armor‬
‭●‬ ‭2 - current player’s frags‬
‭●‬ ‭3 - current player’s ammo amount for the ammo specified by‬‭param‬
‭●‬ ‭4 - current player’s ammo amount for the currently selected weapon‬
‭●‬ ‭5 - current player’s maximum ammo amount for the ammo specified by‬‭param‬
‭●‬ ‭6 - current player’s ammo amount for the weapon specified by‬‭param‬
‭●‬ ‭7 - current player’s maximum ammo amount for the weapon specified by‬‭param‬

‭Element conditions‬
‭A status bar element can have any number of conditions that must all resolve to true for both‬
‭that element and its child elements to render. When zero conditions are defined by‬
‭specifying null in the JSON document, a resolution of true is determined. Using an empty‬
‭array to define zero conditions is considered an error condition.‬

‭Element conditions‬‭do not‬‭stop the element from updating‬‭during the game tic, they only‬
‭stop the element from rendering.‬

‭The following conditions are available to a status bar element:‬

‭Type‬ ‭Description‬



‭0‬ ‭Whether the weapon defined by‬‭param‬‭is owned‬

‭1‬ ‭Whether the weapon defined by‬‭param‬‭is selected‬

‭2‬ ‭Whether the weapon defined by‬‭param‬‭is not selected‬

‭3‬ ‭Whether the weapon defined by‬‭param‬‭has a valid ammo‬‭type‬

‭4‬ ‭Whether the selected weapon has a valid ammo type‬

‭5‬ ‭Whether the ammo type defined by‬‭param‬‭matches the‬‭selected weapon’s‬
‭ammo type‬

‭6‬ ‭Whether any weapon in a slot defined by‬‭param‬‭is owned‬

‭7‬ ‭Whether any weapon in a slot defined by‬‭param‬‭not‬‭owned‬

‭8‬ ‭Whether any weapon in a slot defined by‬‭param‬‭is selected‬

‭9‬ ‭Whether any weapon in a slot defined by‬‭param‬‭is not‬‭selected‬

‭10‬ ‭Whether the item defined by‬‭param‬‭is owned‬

‭11‬ ‭Whether the item defined by‬‭param‬‭is not owned‬

‭12‬ ‭Whether the current game version is greater than or equal to the feature level‬
‭defined by‬‭param‬

‭13‬ ‭Whether the current game version is less than the feature level defined by‬
‭param‬

‭14‬ ‭Whether the session type is equal to the type defined by‬‭param‬

‭15‬ ‭Whether the session type is not equal to the type defined by‬‭param‬

‭16‬ ‭Whether the game mode is equal to the mode defined by‬‭param‬

‭17‬ ‭Whether the game mode is equal to the mode defined by‬‭param‬

‭18‬ ‭Whether the hud mode is equal to the mode defined by‬‭param‬

‭The session type has the following values:‬

‭●‬ ‭0 - single player‬
‭●‬ ‭1 - cooperative‬
‭●‬ ‭2 - deathmatch (any kind)‬

‭The game version and game mode parameters match those defined in the GAMECONF‬
‭specification.‬

‭The item parameters match those defined by the‬‭Pickup‬‭item type‬‭Thing field in the‬
‭IDHACKED24 specification. Note that the following item types always resolve to‬‭false‬‭:‬

‭●‬ ‭-1 - no item‬



‭●‬ ‭0 - message only‬
‭●‬ ‭8 - health bonus‬
‭●‬ ‭9 - stimpack‬
‭●‬ ‭10 - medikit‬
‭●‬ ‭11 - soulsphere‬
‭●‬ ‭12 - megasphere‬
‭●‬ ‭13 - armor bonus‬

‭The hud mode has the following values:‬

‭●‬ ‭0 - standard layout‬
‭●‬ ‭1 - compact layout‬

‭Data type definitions‬

‭root‬

‭Name‬ ‭Type‬ ‭Description‬

‭numberfonts‬ ‭array of‬
‭numberfont‬

‭An array of number fonts. Must not be null; must‬
‭contain at least one entry.‬

‭statusbars‬ ‭array of‬
‭statusbar‬

‭An array of status bars. Must not be null; must‬
‭contain at least one entry.‬

‭numberfont‬

‭Name‬ ‭Type‬ ‭Description‬

‭name‬ ‭string‬ ‭An identifier used to resolve this number font.‬

‭type‬ ‭integer‬ ‭One of the values matching the type enumeration‬
‭described in the number font section.‬

‭stem‬ ‭string‬ ‭A string representing the first few characters of each‬
‭glyph’s name in the WAD dictionary. Note that 3‬
‭characters is the maximum if you want to resolve‬
‭the minus and percent glyphs; longer stems are‬
‭allowed thanks to Doom and Doom II requiring it for‬
‭the STYS number font.‬



‭statusbar‬

‭Name‬ ‭Type‬ ‭Description‬

‭height‬ ‭integer‬ ‭The height of this status bar in virtual units.‬

‭fullscreenrender‬ ‭boolean‬ ‭Whether this statusbar is a fullscreen overlay or a‬
‭standard status bar.‬

‭fillflat‬ ‭string‬ ‭The name of the flat to fill the extended virtual‬
‭space with‬

‭children‬ ‭array of‬
‭sbarelem‬

‭An array of child elements.‬

‭sbarelem‬

‭Name‬ ‭Type‬ ‭Description‬

‭canvas‬ ‭canvas‬ ‭Contents to describe this element as a Canvas. Can‬
‭be undefined.‬

‭graphic‬ ‭graphic‬ ‭Contents to describe this element as a Graphic. Can‬
‭be undefined.‬

‭animation‬ ‭animation‬ ‭Contents to describe this element as an Animation.‬
‭Can be undefined.‬

‭face‬ ‭face‬ ‭Contents to describe this element as a Face. Can be‬
‭undefined.‬

‭facebackground‬ ‭facebg‬ ‭Contents to describe this element as a Face‬
‭Background. Can be undefined.‬

‭number‬ ‭number‬ ‭Contents to describe this element as a Number. Can‬
‭be undefined.‬

‭percent‬ ‭percent‬ ‭Contents to describe this element as a Percent. Can‬
‭be undefined.‬



‭canvas, face, facebg‬

‭Name‬ ‭Type‬ ‭Description‬

‭x‬ ‭integer‬ ‭The virtual x position of this element.‬

‭y‬ ‭integer‬ ‭The virtual y position of this element.‬

‭alignment‬ ‭bitfield‬ ‭The alignment of this element’s rendered graphics.‬

‭tranmap‬ ‭string‬ ‭The name of a transparency map lump to resolve.‬
‭Can be null.‬

‭translation‬ ‭string‬ ‭The name of a translation to resolve. Can be null.‬

‭conditions‬ ‭array of‬
‭condition‬

‭A series of conditions to meet to render both this and‬
‭all child elements. Can be null; an array length of 0 is‬
‭considered an error condition.‬

‭children‬ ‭array of‬
‭sbarelem‬

‭An array of child elements. Can be null; an array‬
‭length of 0 is considered an error condition.‬

‭condition‬

‭Name‬ ‭Type‬ ‭Description‬

‭condition‬ ‭enum‬ ‭The type of condition to resolve, as described by the‬
‭table in the “Element conditions” section‬

‭param‬ ‭integer‬ ‭A parameter as described for each condition type.‬

‭graphic‬

‭Name‬ ‭Type‬ ‭Description‬

‭x‬ ‭integer‬ ‭The virtual x position of this element.‬

‭y‬ ‭integer‬ ‭The virtual y position of this element.‬

‭alignment‬ ‭bitfield‬ ‭The alignment of this element’s rendered graphics.‬

‭tranmap‬ ‭string‬ ‭The name of a transparency map lump to resolve.‬
‭Can be null.‬

‭translation‬ ‭string‬ ‭The name of a translation to resolve. Can be null.‬

‭conditions‬ ‭array of‬
‭condition‬

‭A series of conditions to meet to render both this and‬
‭all child elements. Can be null; an array length of 0 is‬
‭considered an error condition.‬

‭children‬ ‭array of‬
‭sbarelem‬

‭An array of child elements. Can be null; an array‬
‭length of 0 is considered an error condition.‬

‭patch‬ ‭string‬ ‭The name of a patch lump to resolve.‬



‭animations‬

‭Name‬ ‭Type‬ ‭Description‬

‭x‬ ‭integer‬ ‭The virtual x position of this element.‬

‭y‬ ‭integer‬ ‭The virtual y position of this element.‬

‭alignment‬ ‭bitfield‬ ‭The alignment of this element’s rendered graphics.‬

‭tranmap‬ ‭string‬ ‭The name of a transparency map lump to resolve.‬
‭Can be null.‬

‭translation‬ ‭string‬ ‭The name of a translation to resolve. Can be null.‬

‭conditions‬ ‭array of‬
‭condition‬

‭A series of conditions to meet to render both this and‬
‭all child elements. Can be null; an array length of 0 is‬
‭considered an error condition.‬

‭children‬ ‭array of‬
‭sbarelem‬

‭An array of child elements. Can be null; an array‬
‭length of 0 is considered an error condition.‬

‭frames‬ ‭array of‬
‭frame‬

‭An array of frames to be rendered in sequential order.‬
‭Must be an array of at least one element; anything‬
‭else is an error condition.‬

‭frame‬

‭Name‬ ‭Type‬ ‭Description‬

‭lump‬ ‭string‬ ‭The name of a patch lump to resolve.‬

‭duration‬ ‭number‬ ‭The minimum amount of time to display this frame in‬
‭seconds.‬



‭number, percent‬

‭Name‬ ‭Type‬ ‭Description‬

‭x‬ ‭integer‬ ‭The virtual x position of this element.‬

‭y‬ ‭integer‬ ‭The virtual y position of this element.‬

‭alignment‬ ‭bitfield‬ ‭The alignment of this element’s rendered graphics.‬

‭tranmap‬ ‭string‬ ‭The name of a transparency map lump to resolve.‬
‭Can be null.‬

‭translation‬ ‭string‬ ‭The name of a translation to resolve. Can be null.‬

‭conditions‬ ‭array of‬
‭condition‬

‭A series of conditions to meet to render both this and‬
‭all child elements. Can be null; an array length of 0 is‬
‭considered an error condition.‬

‭children‬ ‭array of‬
‭sbarelem‬

‭An array of child elements. Can be null; an array‬
‭length of 0 is considered an error condition.‬

‭font‬ ‭string‬ ‭The name of the number font to render this number‬
‭with.‬

‭type‬ ‭enum‬ ‭The number to resolve.‬

‭param‬ ‭integer‬ ‭The parameter to use for number resolution.‬

‭maxlength‬ ‭integer‬ ‭The maximum number of digits to render, including‬
‭the minus glyph and excluding the percentage glyph.‬

‭Reference implementation details‬
‭The SBARDEF files that come with extras.wad and id24res.wad contain the classic status‬
‭bar, a full screen overlay status bar, and a blank full screen. Demos will always use the last‬
‭status bar in an SBARDEF when loaded, so any custom SBARDEFs should also define a‬
‭blank fullscreen as the final statusbar entry.‬


