Make a copy of this checklist to your drive, and use it to keep track of your progress when implementing all the new
features in your own source port.

Just fill the left-most cell with any value to indicate that it is completed.

General features and miscellaneous work

Music audio format - MP3

Music audio format - OGG Vorbis

Music audio format - Tracker

Allow for categorisation of features via an enumation that matches the feature level definition

Either adapt or create new V_DrawPatch routines that map all calls to a virtual 320x200 space

Allow V_DrawPatch routines to accept transparency maps and translation tables

Update the 3D renderer to allow colormaps to be defined per-sector, overriding the Boom transfer colormap
when it is set

Update the flat renderer to allow rotations

Update r_segs to render skies via user-defined skies as well as the original F_SKY hardcoded sky flat
Update the mobijinfo, state, sound, sprite, weapon, and ammo structures with the new defined fields
Copy the mobijinfo, state, sound, sprite, weapon, and ammo tables and adapt to your codebase

Update existing mobjinfo with new defaults and newly defined values for exceptional mobjinfo types
Adapt the mobjinfo, state, sound, sprite, weapon, and ammo table variables to be associative maps
Add an associative map for the doomednum field in a mobjinfo

Construct the associative maps in the manner described in the DeHackEd spec

Change the map thing spawner to ignore 0 and -1, spawn players between 1 and 4, and lookup the
doomednum associative map for a valid mobjinfo when not a deathmatch start (including negative indices)

Update the weapon selection code to select by slot instead of by the hardcoded weapon enumeration when
this feature level is enabled

Update the player's weaponowned, ammo, and maxammo fields to allow arbitrary weapon and ammo indices

Update the item pickup code in p_inter to use the new mobijinfo values when this feature level is enabled and
when it is not one of the vanilla sprites set on the object

Update the respawning monsters code to use the new mobjinfo values

Update the action function structure to verify the type of function being set; and that the parameters the
function is being called with match the set function signature

Change am_noammo and wp_nochange to equal -1

JSON Lumps
Import or write a JSON parser
Write a generic handler for JSON lumps that takes a function to execute with the "data" element as a
parameter

Interlevel lumps

Add the exitanim and enteranim fields to UMAPINFO
Write a JSON parser for interlevel lumps
Adapt the wi_stuff file to allow data-driven creation of elements

Create a conditions handler
Ensure previous behavior is retained when no interlevel lumps are in use

Finale lumps

Add the endfinale fields to UMAPINFO
Write a JSON parser for finale lumps
Adapt the f_finale files to allow data-driven finales (music, backgrounds, bunny overlay behavior, cast roll calls)

Allow progression out of a finale if you can go to a new map
Create a new animation-based cast roll call as an alternative to the hardcoded roll call



Ensure previous behavior is retained when no finale lumps are in use

Status bars

Write a JSON parser for the SBARDEF lump

Adapt the st_lib and st_stuff files to allow data-driven creation of elements

Create a conditions handler

Create a generic number font renderer

Create an animation element

Create a hierarchical renderer and allow elements to have any number of children

Ensure the screenblocks value can select all loaded status bars; clamp at the previous minimum and
maximum values otherwise

Translations
Write a JSON parser for translation lumps

Add hardcoded translation entries for T_GREEN, T_INDIGO, T_BROWN, T_RED, T_YELLOW, T_BLUE,
T_NAVY, and T_MAGENTA and allow them to be overridden by WAD entries with the same name

Ensure there is a path for the 3D renderer to accept arbitrary translation tables from mobjs

Skies

Write a JSON parser for the SKYDEF lump

Implement the Doom 64/Playstation Doom firesky using any texture defined in TEXTURE1/2 as a target
Implement Hexen-style transparency (0 palette index is completely transparent) for layered skies

Update the sky renderer to resolve skies based on flat name, and allow rendering a foreground sky texture
with Hexen-style transparency

Demo loop
Write a JSON parser for DEMOLOOP lump
Update the demo loop code in d_main to defer to a demoloop structure when defined

Game configuration

Write a JSON parser for the GAMECONF lump

Add functionality to the wad handler to allow unloading WADs

Parse all specified IWAD and PWAD files for GAMECONF lumps, then unload all WADs
Load all collected WADs from the GAMECONF pass

Implement the new compatibility flags for the OPTIONS lump

Mapping additions

Create a new exit type that resets player inventory

Create a music changer that is immediate and resolves lumps by exact name
Update texture scrollers to allow scrolling front and back sidedefs

Transfer sector colormaps when transferring floor and ceiling lighting

Add the new line types to the linedef activation handlers

Update UMAPINFQ's bossaction field to allow thing numbers as well as mnemonics; and add the
bossactionednum field to use a thing's doomednum instead

DeHackEd additions
Change allocation of new objects to push to the back of the in-order table and insert in to the associative maps
Allow weapon and ammo definitions to allocate new weapons and ammo

Check for and allocate objects whenever a frame, sound, sprite, mobjinfo, weapon, or ammo reference is
encountered

Add the new hardcoded strings to your string tables



Allow user-defined string mnemonics starting with USER _ to be added to your string lookup table
Add each new field defined for each type to your DeHackEd parser

Reconstruct the associative maps after each patch is parsed

Implement the FNV-1a algorithm

Hash each item in each in-order table and compare against provided hashes in the next loaded DeHackEd
patch



