
‭ID24HACKED formal specification 0.99.1‬
‭The creation of the ID24 standard has resulted in an expansion of the capabilities of‬
‭Dehacked patches. This specification details the additions and changes required to support‬
‭Dehacked patches under the ID24 featureset.‬

‭Minimum engine featureset‬
‭This specification applies to any ID24 supporting source port.‬

‭Baseline features‬
‭ID24HACKED is a superset of the following Dehacked features:‬

‭●‬ ‭DeHackEd/Vanilla Doom‬
‭●‬ ‭Boom‬
‭●‬ ‭MUSINFO‬
‭●‬ ‭MBF‬
‭●‬ ‭DEHEXTRA‬
‭●‬ ‭MBF21‬
‭●‬ ‭DSDHACKED‬

‭It includes and supports everything defined by those ports and specifications. The above list‬
‭is also considered an order, from least features to most features with each featureset being a‬
‭superset of the prior one, for the sake of determining a featureset for the engine to run in.‬

‭Identifying an ID24HACKED patch‬
‭There are two primary methods for identifying an ID24HACKED patch:‬

‭●‬ ‭Doom version‬‭is set to‬‭2024‬
‭●‬ ‭Encountering anything specified in this document that is not defined in the baseline‬

‭features‬

‭For the sake of convenience, a Dehacked implementation should be able to report the‬
‭highest level featureset encountered so that the engine can determine whether it should‬
‭consider the patch valid.‬

‭Dehacked patch initialisation order‬
‭While MBF stated that Dehacked patches from a command line are to be considered first,‬
‭this behaviour conflicts with the accumulation requirements specified above. The order for‬
‭Dehacked patch initialisation is now as follows:‬

‭●‬ ‭Every DEHACKED lump found in the WAD dictionary, in order from first loaded WAD‬
‭(including the IWAD) to the last loaded WAD.‬

‭●‬ ‭Any .deh files encountered on the command line in the order specified (if the port‬
‭supports loading from the command line).‬

‭This also applies retroactively to the previously stated baseline features.‬

‭DEHACKED limitation removals‬
‭It has become apparent that the requirements for id Software and/or its affiliates to add new‬
‭features to its commercial Doom and Doom II releases and taking existing community‬

‭standards into account would result in potentially breaking any number of user mods. The‬
‭following limitation removals are designed to sidestep this while allowing current and future‬
‭commercial releases to add new features as required without this concern hanging‬
‭overhead.‬

‭ID24HACKED‬‭builds on the‬‭DSDHACKED‬‭specification allowing‬‭(2^31 - 1)‬‭positive‬
‭indices for all supported items (frame, thing, sprite, sound). ID24HACKED extends that to‬
‭allow just as many negative indices, giving a range of‬‭(2^32 - 1)‬‭valid values for any index‬
‭(frame, thing, sprite, sound, weapon, ammo) while also allowing custom string mnemonics‬
‭starting with‬‭USER_‬‭.‬

‭The range of possible values is divided up amongst a few purposes, As well as limitations‬
‭placed on a DEHACKED patch, those purposes are illustrated in the following table:‬

‭First index‬ ‭Last index‬ ‭Create?‬ ‭Modify?‬ ‭Purpose‬

‭0x00000000‬ ‭0x7FFFFFFF‬ ‭Y‬ ‭Y‬ ‭Original valid range.‬

‭0x80000000‬ ‭0x8FFFFFFF‬ ‭N‬ ‭N‬ ‭Implementation defined. Essentially‬
‭a place for source ports to define‬
‭internal objects.‬

‭0x90000000‬ ‭0xBFFFFFFF‬ ‭N‬ ‭Y‬ ‭Reserved for exclusive use by id‬
‭Software and its affiliates‬‭. Any‬
‭future specifications published by id‬
‭Software and/or its affiliates will use‬
‭indices within this range.‬

‭0xC0000000‬ ‭0xFFFFFFFE‬ ‭N‬ ‭Y‬ ‭Reserved for the community‬‭. Any‬
‭future community specifications that‬
‭are published should use indices‬
‭from within this range.‬

‭0xFFFFFFFF‬ ‭0xFFFFFFFF‬ ‭N‬ ‭N‬ ‭Invalid index.‬

‭When dealing with 16-bit values such as the thing type number found in map definitions‬
‭(specified by the‬‭ID #‬‭field in a Thing definition),‬‭the following values apply:‬

‭First index‬ ‭Last index‬ ‭Create?‬ ‭Modify?‬ ‭Purpose‬

‭0x0000‬ ‭0x7FFF‬ ‭Y‬ ‭Y‬ ‭Original valid range.‬

‭0x8000‬ ‭0x8FFF‬ ‭N‬ ‭N‬ ‭Implementation defined. Essentially‬
‭a place for source ports to define‬
‭internal objects.‬

‭0x9000‬ ‭0xBFFF‬ ‭N‬ ‭Y‬ ‭Reserved for exclusive use by id‬
‭Software and its affiliates‬‭. Any‬
‭future specifications published by id‬
‭Software and/or its affiliates will use‬
‭indices within this range.‬

‭0xC000‬ ‭0xFFFE‬ ‭N‬ ‭Y‬ ‭Reserved for the community‬‭. Any‬
‭future community specifications that‬
‭are published should use indices‬
‭from within this range.‬

‭0xFFFF‬ ‭0xFFFF‬ ‭N‬ ‭N‬ ‭Invalid index.‬

‭The community range is not a free-use-by-anyone range. It is designed to be a range that‬
‭the entire community can agree upon and implement in every source port. Any usage of this‬
‭range that is not formally agreed upon by the community is considered in violation of ID24‬
‭and any and all future specifications based upon this work, and at best should be considered‬
‭“in development for consideration by the community”.‬

‭String mnemonics‬
‭String mnemonics starting with‬‭USER_‬‭are to be added‬‭to the mnemonic resolution table.‬
‭There is no limitation to what these mnemonics can be called outside of the requirement to‬
‭begin with‬‭USER_‬‭.‬

‭In addition, the following mnemonics and their corresponding strings have been added:‬

‭Mnemonic‬ ‭String‬

‭ID24_GOTINCINERATOR‬ ‭You got the incinerator!‬

‭ID24_GOTCALAMITYBLADE‬ ‭You got the calamity blade! Hot damn!‬

‭ID24_GOTFUELCAN‬ ‭Picked up a fuel can.‬

‭ID24_GOTFUELTANK‬ ‭Picked up a fuel tank.‬

‭ID24_COLOR_GREEN‬ ‭Green‬

‭ID24_COLOR_INDIGO‬ ‭Indigo‬

‭ID24_COLOR_BROWN‬ ‭Brown‬

‭ID24_COLOR_RED‬ ‭Red‬

‭ID24_COLOR_YELLOW‬ ‭Yellow‬

‭ID24_COLOR_BLUE‬ ‭Blue‬

‭ID24_COLOR_NAVY‬ ‭Navy‬

‭ID24_COLOR_MAGENTA‬ ‭Magenta‬

‭Any unknown mnemonics encountered in a Dehacked file should be ignored.‬

‭Codepointer verification‬
‭It has always been possible to specify codepointers intended for things in a frame intended‬
‭for player sprites and vice versa. While it is not an expectation to catch this at parse time, it‬

‭is expected that code errors at runtime if it tries to execute a codepointer not intended for the‬
‭current object.‬

‭Miscellaneous values changes‬
‭Due to the expansion of Dehacked capabilities, the following values now set values in the‬
‭built-in weapon and ammo slots rather than global values:‬

‭●‬ ‭BFG Cells/Shot - updates the‬‭Ammo per shot‬‭field in‬‭the BFG weapon entry‬
‭●‬ ‭Initial Bullets - updates the‬‭Initial ammo‬‭field in‬‭the clip/bullet ammo entry‬

‭New object allocation‬
‭Note that while‬‭DSDHACKED‬‭specifies that indices allocate‬‭objects in a range from lowest‬
‭index to highest index, this requirement is removed from‬‭ID24HACKED‬‭. A Dehacked patch‬
‭contains perfect information allowing you to pre-determine exactly which indices are in use‬
‭after a patch has been parsed. Further, allowing indices in the negative range either requires‬
‭funky C array arithmetic or a very large array by reinterpreting that negative value at a‬
‭bitwise level to be a positive value.‬

‭As such,‬‭ID24HACKED‬‭parsing only allocates objects‬‭for an index when they are‬
‭encountered as a new object definition; or whenever a field that refers to those objects via‬
‭an index is encountered and it was not previously defined.‬

‭One notable exception to the allocation rule is for action pointer parameters. As each value‬
‭in a DeHackEd patch can be defined in any arbitrary order, to simplify parsing logic each‬
‭Thing, Frame, and Sound parameter is resolved after a Frame has finished parsing.‬

‭New weapons, ammo types, things, frames, sprites, and sounds‬
‭A complete table of all new additions to the internal tables can be found in <a separate file‬
‭stored with these specifications>. These tables must be compiled and constructed into a‬
‭master list - known as the‬‭in-order table‬‭- and inserted‬‭into the corresponding‬‭associative‬
‭map‬‭before allocating new things from a DeHackEd patch.‬

‭Table construction‬
‭Each‬‭in-order table‬‭has a related‬‭associative map‬‭used for resolving objects via an index.‬
‭These‬‭associative maps‬‭are to be used in place of‬‭the existing tables.‬‭Associative maps‬
‭exist for each of the following datatypes:‬

‭●‬ ‭Thing‬
‭●‬ ‭Frame‬
‭●‬ ‭Sprite‬
‭●‬ ‭Sound‬
‭●‬ ‭Weapon‬
‭●‬ ‭Ammo‬

‭An extra‬‭associative map‬‭is maintained for the‬‭ID‬‭#‬‭field of a Thing definition (referred to‬
‭as the‬‭spawn map‬‭). Spawning a thing is now resolved‬‭from the‬‭spawn map‬‭instead of‬
‭iterating through the‬‭in-order‬‭table.‬

‭The‬‭in-order tables‬‭are constructed in the following‬‭way for every data type except things:‬

‭●‬ ‭Original built-in tables in order‬
‭●‬ ‭ID24 tables in order‬

‭Things are constructed the following way:‬

‭●‬ ‭Original built-in tables in order‬
‭●‬ ‭MUSINFO 14101-14064 entries in order‬
‭●‬ ‭ID24 tables in order‬

‭Any new entries defined by the DeHackedPatch must be placed after the entries as‬
‭described above and inserted into the‬‭associative‬‭map‬‭.‬

‭At program initialisation and after any DeHackEd patch is loaded, each‬‭associative map‬
‭must be rebuilt with the following logic:‬

‭●‬ ‭Clear every‬‭associative map‬
‭●‬ ‭For each‬‭in-order table‬

‭○‬ ‭Create a copy and sort each‬‭item‬‭in ascending order‬‭by its identifying index‬
‭■‬ ‭If the‬‭item‬‭is a Thing, sort any‬‭item‬‭with matching‬‭identifying indices‬

‭by‬‭ID #‬
‭■‬ ‭If the related‬‭associative map‬‭is the‬‭spawn map‬‭, do‬‭not sort the‬

‭in-order‬‭table at all‬
‭○‬ ‭Iterate through each‬‭item‬‭in the‬‭in-order table‬

‭■‬ ‭If this‬‭item‬‭does not exist in the related‬‭associative‬‭map‬‭, then insert‬
‭it into the‬‭associative map‬

‭New objects are to be pushed to the back of the‬‭in-order‬‭tables‬‭; and also added to the‬
‭associative map‬‭immediately in order for DeHackEd‬‭patches to correctly refer to objects‬
‭defined earlier in the patch. Note that while the order is not important during a DeHackEd‬
‭patch, it is important for the game simulation to maintain backwards compatibility with vanilla‬
‭(in particular, the‬‭spawn map‬‭rules are designed to‬‭work . You don’t want to skip the‬
‭associative map‬‭reconstruction step.‬

‭Accumulating Dehacked patches‬
‭While it has always been possible to load DeHackEd patches on top of one another, at best‬
‭this has always been undefined behaviour. DeHackEd as originally specified has an‬
‭expectation that it is operating on a vanilla Doom set of tables. It makes no attempts to verify‬
‭if this is true.‬

‭Due to needing to avoid undefined behaviour for the sake of running on video game console‬
‭platforms, DeHackEd patches can now define a series of hash values that are calculated‬
‭from the tables before any given DeHackEd patch is applied. These hash values indicate‬
‭that a Dehacked patch has been tested and confirmed to work with previously loaded‬
‭DeHackEd patches. This is applied retroactively to every previous DeHackEd specification -‬
‭an‬‭ID24‬‭capable port can consider and process this‬‭regardless of the feature level a mod‬
‭requests/supports and is preferred to be the default way to handle DeHackEd patches (with‬
‭it being an outright requirement in the official versions of Doom and Doom II sold in stores of‬
‭all kinds).‬

‭As this is a lengthy topic, further information on hashing is provided in a separate document.‬

‭Data types‬
‭Each data type used in the tables following this section correspond to the following:‬

‭●‬ ‭string‬‭- C-style null-terminated string, stored as‬‭a pointer‬
‭●‬ ‭bitfield‬‭- 32-bit integer‬
‭●‬ ‭integer‬‭- 32-bit signed integer‬
‭●‬ ‭enum‬‭- 32-bit signed integer‬
‭●‬ ‭bool‬‭- 8-bit integer‬
‭●‬ ‭fixed‬‭- 32-bit signed integer‬

‭Frame additions‬
‭A frame can now be rendered with a transparency lump. This lump applies to both thing and‬
‭player sprite states.‬

‭IDHACKED24‬‭adds the following parameters to a Frame‬‭definition:‬

‭Name‬ ‭Type‬ ‭Default‬ ‭Description‬

‭Tranmap‬ ‭string‬ ‭null‬ ‭The name of a transparency map lump to use‬
‭when rendering the sprite associated with this‬
‭frame.‬
‭Note: While a Thing can use the built-in‬
‭transparency map with the TRANSLUCENT‬
‭flag, a frame’s Tranmap will override this.‬

‭Frame defaults‬
‭All frames defined by prior specifications are to have default values set to those defined in‬
‭the fields table; all used-defined things likewise will have those same default values.‬

‭Thing additions‬
‭Things have had a sizable expansion of functionality in‬‭IDHACKED24‬‭.‬

‭Things now have some capacity to control their behaviour when respawning monsters is‬
‭turned on (either via command line or the Nightmare! difficulty setting). They can control if‬
‭they’re allowed to respawn, as well as how long they must stay dead at a minimum and their‬
‭chances of respawning.‬

‭Special items previously had the ability to remain in the world on collection as a hardcoded‬
‭feature of certain multiplayer modes. A thing is now able to explicitly define this behavior for‬
‭single player, cooperative, and deathmatch modes.‬

‭Dropped items are no longer hardcoded to Thing type. Any thing is able to define a thing‬
‭index representing the item to drop on death. Note that when a source port is not operating‬
‭with‬‭ID24‬‭compatibility that vanilla behaviour must‬‭be retained.‬

‭Special item collection is no longer hardcoded to sprite names. As such, a full suite of values‬
‭to handle collection is exposed. When a thing does not define any of the‬‭ID24‬‭values for item‬
‭collection with the exception of the‬‭Pickup message‬‭,‬‭the vanilla behaviour is retained. Any‬

‭item with a‬‭Pickup message‬‭overwrites the defined vanilla message regardless of‬
‭behavior.‬

‭Note that when a source port is not operating with‬‭ID24‬‭compatibility, vanilla behaviour must‬
‭be retained.‬

‭IDHACKED24‬‭adds the following fields to a Thing definition:‬

‭Name‬ ‭Type‬ ‭Default‬ ‭Description‬

‭ID24 Bits‬ ‭bitfield‬ ‭0‬ ‭New flags to control ID24 thing features.‬

‭Min respawn‬
‭tics‬

‭integer‬ ‭420‬ ‭The number of tics to wait when respawning‬
‭monsters is turned on before attempting to‬
‭respawn.‬

‭Respawn dice‬ ‭integer‬ ‭4‬ ‭The value that a RNG value (between 0 and 255)‬
‭must be greater than to allow this item to‬
‭respawn.‬

‭Dropped item‬ ‭integer‬ ‭-1‬ ‭The thing ID to spawn on death.‬

‭Pickup ammo‬
‭type‬

‭integer‬ ‭-1‬ ‭The ammo ID to pick up when collecting this‬
‭SPECIAL thing.‬

‭Pickup ammo‬
‭category‬

‭bitfield‬ ‭-1‬ ‭The ammo category to resolve a quantity from‬
‭when collecting this SPECIAL thing.‬

‭Pickup‬
‭weapon type‬

‭integer‬ ‭-1‬ ‭The weapon ID to pick up when collecting this‬
‭SPECIAL thing.‬

‭Pickup item‬
‭type‬

‭enum‬ ‭-1‬ ‭The powerup to pick up when collecting this‬
‭SPECIAL thing.‬

‭Pickup bonus‬
‭count‬

‭integer‬ ‭6‬ ‭A value to add to the screen flash counter when‬
‭collecting this SPECIAL thing.‬

‭Pickup sound‬ ‭integer‬ ‭0‬ ‭The sound ID to play when collecting this‬
‭SPECIAL thing.‬

‭Pickup‬
‭message‬

‭string‬ ‭null‬ ‭The string mnemonic to resolve and display‬
‭when picking up this SPECIAL thing.‬

‭Translation‬ ‭string‬ ‭null‬ ‭The translation lump to use when rendering this‬
‭thing.‬

‭ID24 bits‬
‭The following values apply to the‬‭ID24 bits‬‭bitfield‬‭(with mnemonics specified in []‬
‭brackets) and are allowed to be combined with any other value:‬

‭●‬ ‭1 [NORESPAWN] - Does not respawn when respawning monsters is turned on‬
‭●‬ ‭2 [SPECIALSTAYSSINGLE] - Special remains in the world when collected in single‬

‭player mode‬

‭●‬ ‭4 [SPECIALSTAYSCOOP] - Special remains in the world when collected in‬
‭cooperative multiplayer mode‬

‭●‬ ‭8 [SPECIALSTAYSDM] - Special remains in the world when collected in deathmatch‬
‭multiplayer mode‬

‭Pickup ammo category‬
‭The following values apply to the‬‭Pickup ammo category‬‭bitfield and are exclusive to‬
‭one another:‬

‭●‬ ‭0 - clip ammo‬
‭●‬ ‭1 - box ammo‬
‭●‬ ‭2 - weapon ammo‬
‭●‬ ‭3 - backpack ammo‬

‭The following values apply to the‬‭Pickup ammo category‬‭bitfield and are allowed to be‬
‭combined with any other value:‬

‭●‬ ‭4 - dropped‬
‭●‬ ‭8 - deathmatch‬

‭A value of -1 in the‬‭Pickup ammo category‬‭bitfield‬‭means that there is no category and‬
‭overrides any bit set as described above.‬

‭Pickup item type‬
‭The following values apply to the‬‭Pickup item type‬‭enumeration:‬

‭●‬ ‭-1 - no item‬
‭●‬ ‭0 - message only‬
‭●‬ ‭1 - blue keycard‬
‭●‬ ‭2 - yellow keycard‬
‭●‬ ‭3 - red keycard‬
‭●‬ ‭4 - blue skull‬
‭●‬ ‭5 - yellow skull‬
‭●‬ ‭6 - red skull‬
‭●‬ ‭7 - backpack‬
‭●‬ ‭8 - health bonus‬
‭●‬ ‭9 - stimpack‬
‭●‬ ‭10 - medikit‬
‭●‬ ‭11 - soulsphere‬
‭●‬ ‭12 - megasphere‬
‭●‬ ‭13 - armor bonus‬
‭●‬ ‭14 - green armor‬
‭●‬ ‭15 - blue armor‬
‭●‬ ‭16 - computer area map‬
‭●‬ ‭17 - light amplification goggles‬
‭●‬ ‭18 - berserk‬
‭●‬ ‭19 - partial invisibility‬
‭●‬ ‭20 - radiation shielding suit‬
‭●‬ ‭21 - invulnerability‬

‭Thing defaults‬
‭All things defined by prior specifications are to have default values set to those defined in the‬
‭fields table; all used-defined things likewise will have those same default values.‬

‭However, the MF_TRANSLUCENT flag added to select things by Boom tables is to be‬
‭removed from the tables entirely. The flag must still be allowed to be set by a DeHackEd‬
‭patch, but the default tables must reflect vanilla Doom for all relevant values.‬

‭Some exceptional default values must be set on certain hardcoded things. These are:‬

‭Thing ID‬ ‭Field‬ ‭Value‬

‭MT_MISC4‬ ‭ID24 Bits‬ ‭SPECIALSTAYSCOOP‬

‭MT_MISC5‬ ‭ID24 Bits‬ ‭SPECIALSTAYSCOOP‬

‭MT_MISC6‬ ‭ID24 Bits‬ ‭SPECIALSTAYSCOOP‬

‭MT_MISC7‬ ‭ID24 Bits‬ ‭SPECIALSTAYSCOOP‬

‭MT_MISC8‬ ‭ID24 Bits‬ ‭SPECIALSTAYSCOOP‬

‭MT_MISC9‬ ‭ID24 Bits‬ ‭SPECIALSTAYSCOOP‬

‭MT_POSSESSED‬ ‭Dropped item‬ ‭MT_CLIP‬

‭MT_SHOTGUY‬ ‭Dropped item‬ ‭MT_SHOTGUN‬

‭MT_CHAINGUY‬ ‭Dropped item‬ ‭MT_CHAINGUN‬

‭MT_WOLFSS‬ ‭Dropped item‬ ‭MT_CLIP‬

‭Weapon additions‬
‭It is now allowed to define weapons not previously defined by the built-in tables.‬

‭Weapons can now define which slot they live in, as well as the priority for selection when‬
‭pressing the key for that slot. The weapon with the highest slot priority in any given slot will‬
‭be selected first when activating that slot; subsequent activations will descend down the list‬
‭of weapons for that slot in decreasing priority.‬

‭Weapons can also define their place in the autoswitch priority list. When autoswitching is‬
‭activated, the weapon with the highest priority will be considered first and will then descend‬
‭down the list of weapons in decreasing priority.‬

‭Weapons can now define whether they are in the player’s inventory on respawn, as well as‬
‭which weapon should be the first one raised. Note that in the case of multiple weapons‬
‭defining themselves as the first one raised, only the last one encountered in declaration‬
‭order will be raised.‬

‭Carousel icons are an optional feature used by the official releases of Doom and Doom II,‬
‭primarily to assist with weapon selection on a control pad. It is entirely at a port’s discretion if‬

‭it implements this feature; however, a port must still parse and set all carousel fields correctly‬
‭regardless.‬

‭The original Doom disallowed selecting the fist weapon when a chainsaw was owned and a‬
‭berserk pack was not picked up in the current level. To replicate - and expand upon - this‬
‭ability, a few additional fields with the following logic have been included:‬

‭●‬ ‭You start being allowed to select this weapon if you own it‬
‭●‬ ‭If‬‭No switch with owned weapon‬‭is defined and you‬‭own that weapon, you are‬

‭disallowed from selecting this weapon‬
‭●‬ ‭If‬‭Allow switch with owned weapon‬‭is defined and you‬‭own that weapon, you‬

‭are allowed to select this weapon‬
‭●‬ ‭If you are allowed to select this weapon‬‭and‬‭if‬‭No‬‭switch with owned item‬‭is‬

‭defined and you own that item, you are disallowed to select this weapon‬
‭●‬ ‭If you are disallowed to select this weapon‬‭and‬‭if‬‭Allow switch with owned‬

‭item‬‭is defined and you own that item, you are allowed‬‭to select this weapon‬
‭●‬ ‭If you are still allowed to select this weapon, select this weapon‬

‭To resolve the above logic, the weapon index resolves via the weapon lookup table; and the‬
‭item index resolves via the table described in “Pickup item type”.‬

‭Note that‬‭wp_nochange‬‭must be redefined to -1 in code‬‭to be compliant with the above‬
‭index range definitions.‬

‭IDHACKED24‬‭adds the following parameters to a weapon‬‭definition:‬

‭Name‬ ‭Type‬ ‭Default‬ ‭Description‬

‭Slot‬ ‭integer‬ ‭-1‬ ‭Which slot to bind this weapon to.‬

‭Slot‬
‭Priority‬

‭integer‬ ‭-1‬ ‭Priority value for selection in this slot.‬

‭Switch‬
‭Priority‬

‭integer‬ ‭-1‬ ‭Priority value when autoswitching.‬

‭Initial‬
‭Owned‬

‭bool‬ ‭false‬ ‭Whether this weapon is available to the player‬
‭on respawn.‬

‭Initial‬
‭Raised‬

‭bool‬ ‭false‬ ‭Whether this weapon is the one to be raised on‬
‭respawn.‬

‭Carousel‬
‭icon‬

‭string‬ ‭“SMUNKN”‬ ‭A patch to be used as a small icon for weapon‬
‭selection wheels/carousels/etc.‬

‭Allow switch‬
‭with owned‬
‭weapon‬

‭integer‬ ‭-1‬ ‭Allow weapon switching according to described‬
‭logic.‬

‭No switch‬
‭with owned‬
‭weapon‬

‭integer‬ ‭-1‬ ‭Disallow weapon switching according to‬
‭described logic.‬

‭Allow switch‬
‭with owned‬
‭item‬

‭integer‬ ‭-1‬ ‭Allow weapon switching according to described‬
‭logic.‬

‭No switch‬
‭with owned‬
‭item‬

‭integer‬ ‭-1‬ ‭Disallow weapon switching according to‬
‭described logic.‬

‭Weapon defaults‬
‭All used-defined weapons will have defaults set corresponding to the above table in addition‬
‭to all defaults for previous specifications.‬

‭For all built-in weapons, the following values must be set in addition to all defaults for‬
‭previous specifications:‬

‭Weapon‬ ‭Field‬ ‭Value‬

‭wp_fist‬ ‭Slot‬ ‭1‬

‭Slot Priority‬ ‭0‬

‭Switch Priority‬ ‭0‬

‭Initial Owned‬ ‭true‬

‭Initial Raised‬ ‭false‬

‭Carousel icon‬ ‭"SMFIST"‬

‭wp_pistol‬ ‭Slot‬ ‭2‬

‭Slot Priority‬ ‭0‬

‭Switch Priority‬ ‭6‬

‭Initial Owned‬ ‭true‬

‭Initial Raised‬ ‭true‬

‭Carousel icon‬ ‭"SMPISG"‬

‭wp_shotgun‬ ‭Slot‬ ‭3‬

‭Slot Priority‬ ‭0‬

‭Switch Priority‬ ‭7‬

‭Initial Owned‬ ‭false‬

‭Initial Raised‬ ‭false‬

‭Carousel icon‬ ‭"SMSHOT"‬

‭wp_chaingun‬ ‭Slot‬ ‭4‬

‭Slot Priority‬ ‭0‬

‭Switch Priority‬ ‭8‬

‭Initial Owned‬ ‭false‬

‭Initial Raised‬ ‭false‬

‭Carousel icon‬ ‭"SMMGUN"‬

‭wp_missile‬ ‭Slot‬ ‭5‬

‭Slot Priority‬ ‭0‬

‭Switch Priority‬ ‭4‬

‭Initial Owned‬ ‭false‬

‭Initial Raised‬ ‭false‬

‭Carousel icon‬ ‭"SMLAUN"‬

‭wp_plasma‬ ‭Slot‬ ‭6‬

‭Slot Priority‬ ‭0‬

‭Switch Priority‬ ‭10‬

‭Initial Owned‬ ‭false‬

‭Initial Raised‬ ‭false‬

‭Carousel icon‬ ‭"SMPLAS"‬

‭wp_bfg‬ ‭Slot‬ ‭7‬

‭Slot Priority‬ ‭0‬

‭Switch Priority‬ ‭2‬

‭Initial Owned‬ ‭false‬

‭Initial Raised‬ ‭false‬

‭Carousel icon‬ ‭"SMBFGG"‬

‭wp_chainsaw‬ ‭Slot‬ ‭1‬

‭Slot Priority‬ ‭1‬

‭Switch Priority‬ ‭5‬

‭Initial Owned‬ ‭false‬

‭Initial Raised‬ ‭false‬

‭Carousel icon‬ ‭"SMCSAW"‬

‭wp_supershotgun‬ ‭Slot‬ ‭3‬

‭Slot Priority‬ ‭1‬

‭Switch Priority‬ ‭9‬

‭Initial Owned‬ ‭false‬

‭Initial Raised‬ ‭false‬

‭Carousel icon‬ ‭"SMSGN2"‬

‭Ammo additions‬
‭It is now allowed to define ammo types not previously defined by the built-in tables.‬

‭Every aspect of an ammo type is now customisable, and does not rely on the vanilla‬
‭behaviour of multiplying ammo values to determine how much ammo is in a box, a weapon,‬
‭or a backpack.‬

‭The skill multiplier values can now be defined independently for each skill, and round down‬
‭the resulting value to get a whole integer value.‬

‭Note that‬‭am_noammo‬‭must be redefined to -1 in code‬‭to be compliant with the above index‬
‭range definitions.‬

‭IDHACKED24‬‭adds the following parameters to an ammo‬‭definition:‬

‭Name‬ ‭Type‬ ‭Default‬ ‭Description‬

‭Initial ammo‬ ‭integer‬ ‭0‬ ‭How much of this ammo the player receives on‬
‭respawn.‬

‭Max upgraded‬
‭ammo‬

‭integer‬ ‭0‬ ‭The value that the maximum amount of ammo is‬
‭set to on collecting a backpack.‬

‭Box ammo‬ ‭integer‬ ‭0‬ ‭How much ammo to receive when collecting a‬
‭box with this ammo type.‬

‭Backpack‬
‭ammo‬

‭integer‬ ‭0‬ ‭How much ammo to receive when collecting a‬
‭backpack.‬

‭Weapon ammo‬ ‭integer‬ ‭0‬ ‭How much ammo to receive when collecting a‬
‭weapon with this ammo type.‬

‭Dropped ammo‬ ‭integer‬ ‭0‬ ‭How much ammo to receive when collecting a‬
‭dropped clip with this ammo type.‬

‭Dropped box‬
‭ammo‬

‭integer‬ ‭0‬ ‭How much ammo to receive when collecting a‬
‭dropped box with this ammo type.‬

‭Dropped‬
‭backpack‬
‭ammo‬

‭integer‬ ‭0‬ ‭How much ammo to receive when collecting a‬
‭dropped backpack.‬

‭Dropped‬
‭weapon ammo‬

‭integer‬ ‭0‬ ‭How much ammo to receive when collecting a‬
‭dropped weapon with this ammo type.‬

‭Deathmatch‬
‭weapon ammo‬

‭integer‬ ‭0‬ ‭How much ammo to receive when collecting a‬
‭weapon with this ammo type in deathmatch‬
‭modes.‬

‭Skill 1‬
‭multiplier‬

‭fixed‬ ‭131072‬
‭(2.0)‬

‭The multiplier to apply to all collected ammo‬
‭counts on skill 1 (I’m Too Young To Die)‬

‭Skill 2‬
‭multiplier‬

‭fixed‬ ‭65536‬
‭(1.0)‬

‭The multiplier to apply to all collected ammo‬
‭counts on skill 2 (Hey, Not Too Rough)‬

‭Skill 3‬
‭multiplier‬

‭fixed‬ ‭65536‬
‭(1.0)‬

‭The multiplier to apply to all collected ammo‬
‭counts on skill 3 (Hurt Me Plenty)‬

‭Skill 4‬
‭multiplier‬

‭fixed‬ ‭65536‬
‭(1.0)‬

‭The multiplier to apply to all collected ammo‬
‭counts on skill 4 (Ultra-Violence)‬

‭Skill 5‬
‭multiplier‬

‭fixed‬ ‭131072‬
‭(2.0)‬

‭The multiplier to apply to all collected ammo‬
‭counts on skill 5 (Nightmare!)‬

‭Per ammo and Max ammo‬
‭If the only fields set in a weapon entry are‬‭Per ammo‬‭and/or‬‭Max ammo‬‭, then a Dehacked‬
‭parser is expected to fill out the the following fields in the a manner consistent with vanilla‬
‭ammo calculations (ie integer operations, meaning all divides are rounded down), in order:‬

‭Value‬ ‭New value‬

‭Max upgraded ammo‬ ‭Max ammo‬‭* 2‬

‭Box ammo‬ ‭Per ammo‬‭* 5‬

‭Backpack ammo‬ ‭Per ammo‬

‭Weapon ammo‬ ‭Per ammo‬‭* 2‬

‭Dropped ammo‬ ‭Per ammo‬‭/ 2‬

‭Dropped box ammo‬ ‭Box ammo‬‭/ 2‬

‭Dropped backpack ammo‬ ‭Backpack ammo‬‭/ 2‬

‭Dropped weapon ammo‬ ‭Weapon ammo‬‭/ 2‬

‭Deathmatch weapon ammo‬ ‭Per ammo‬‭* 5‬

‭Note that this logic also applies to accumulative Dehacked patches. Whether an ammo‬
‭definition has previously been created/modified by Dehacked (or is from an internal table) is‬
‭not considered. As such, ammo definitions that expect to be accumulative in ID24 will work‬
‭best by explicitly providing every value required.‬

