ID24 formal specification 0.99.1

As a part of developing features for the new Doom + Doom Il release, certain features were
needed in order to make development easier and to provide a solid foundation for any and
all future releases. To collect all these features in one place that source ports can implement
and use, a new feature specification dubbed 1D24 has been created.

Baseline features
ID24 is a superset of the following standards and features:

Vanilla Doom
Boom
MUSINFO
MBF
DEHEXTRA
MBF21
DSDHACKED
UMAPINFO

A complete ID24 implementation requires support for those standards and features.

For simplicity’s sake, these features are also enumerated in the following order, from the
least amount of features to the most amount of features and referred to as a feature level:

Doom 1.9

Limit Removing (with UMAPINFO)
Limit Removing With Bug Fixes
Boom 2.02

complevel 9 (with MUSINFO)

MBF

DEHEXTRA

MFB21

DSDHACKED

ID24

This ordering is important for a few features described by the ID24 specification.

JSON lumps

A key feature that all new data formats use is the JSON Lump specification. Rather than
create a new data format for each new data type, a standard JSON root element has been
created that can be parsed and interpreted by both tools and source ports. As a
standardised format, this cuts down on the amount of work required to implement new
datatypes and provides a simple way to support new datatypes in the future.

Major features
Each major feature of ID24 is covered in a separate document. These features are:

e DEMOLOOP - a way to customise the Doom demo loop
e Finale lumps - a way to customise Doom finales, and allow continuing to another
map from any finale

GAMECONEF - a way to describe how to set up the runtime environment of any WAD
Mapping additions - new linedef types and thing numbers for mappers to use
ID24HACKED - extensions to DeHackEd, plus a way to verify valid DeHackEd states
before parsing additional DeHackEd lumps

Interlevel lumps - a way to define background animations on victory screens
SBARDEF - a way to create custom status bars

SKYDEFS - a way to create custom skies, including Doom 64 fire skies

Translations - a way to create new translations for palette swapping

New placeable things

Perhaps of most interest to the community, Doom + Doom II's new episode Legacy of Rust
includes a suite of new monsters, decorations, and weapons for use in your maps. These
new things are exposed to everyone via a new set of table entries that do not conflict with
any previous community standard or usage of DeHackEd indices.

Required data

All required data to support the ID24 specification is contained within the id24res.wad file.
As this is a commercial product, note that illegal redistribution of this file is covered by
normal copyright laws. Source ports should use their normal IWAD resolution rules to locate
and load this WAD before the main IWAD when ID24 compatibility is enabled.

Music formats
A complete ID24 implementation supports the following additional audio formats for music
playback:

e OGG Vorbis
e Tracker

Future revisions
Future revisions of any part of the ID24 specification and feature set will incur the following
version number changes for the following reasons:

e Major - breaking changes, not backward compatible
e Minor - additions and minor changes
e Revision - bug fixes and clarifications

As ID24 aims to be a stable feature set, major revisions will aim to be restricted to a new
feature set specification.

Guiding principles for ID24 specifications

As a set of features developed for a commercial product, ID24 needed to satisfy the
requirements of shipping on multiple vendor-controlled platforms, compatibility with
community standards, and ensuring that the future commercial viability of Doom and Doom ||
would be secured.

Rather than assume generic names for data fields, explicit naming for ID24 has been taken
in cases where a conflict is likely to occur. This is most pertinent in the DeHackEd features
that have been added, where source ports (and even the original Heretic) have taken to

calling additional flags fields “flags2”, “flags3”, etc. Naming such fields for ID24 at the code

and data level makes it explicit what functionality set these fields should be used for, and
avoids conflicting with prior or future functionality.

There are many standards over the years that take the assumption of the implementation
before it as a part of its standard. A primary example is UMAPINFO, which changes
behavior depending on game mode, and even relies on undocumented behavior on how an
episode number is resolved. Rather than assume a prior implementation, an explicit
complete implementation is defined and specced. This includes the JSON data level, which
have all been authored as reflections of data structures rather than a way to describe
modifying existing structures.

When creating a new feature and specification, an attempt was made to see if there were
suitable community standards. While some source ports have solutions for what has been
specced, there is nothing standard and widely adopted amongst a broad range of source
ports. These newly developed specifications will be the basis for any and all official content
that may or may not be commissioned in the future and as such have been developed to
replicate functionality that was already there, add anything required for this release, and
leave a path open for future development and iteration on these features and specifications.

