SBARDEF formal specification 0.99.1

A way of defining custom status bar layouts has not existed in most Doom source ports. This
specification documents a data format and corresponding features that replicates and
expands Doom’s status bar rendering functionality.

Scope of features

This specification has been written to replicate the Doom and Doom II: Hell on Earth status
bar, while expanding its abilities to handle rendering as a full screen overlay. Very little has
been added to the featureset that extends beyond these requirements.

JSON lump
This specification uses the JSON Lump 1.0.0 formal specification as the root of its data
storage, with a type of “statusbar” and a version of “1.0.0".

Minimum engine featureset
This specification applies to any limit-removing featureset or greater. While it is optional for
other valid featuresets, it is a requirement of the 1D24 featureset.

Only one lump

Status bars are expected to be defined with the SBARDEF lump. If this lump does not exist,
then the original behaviour for status bars is to be used. For WAD resolution purposes, this
lump follows the standard rules and resolves to the last lump found in the WAD dictionary
with that name.

As there is only one lump, any custom status bars are expected to redefine an entire status
bar chain and not just redefine the bar they are interested in.

ID24 weapons

To properly support ID24 weapons, id24res.wad contains a SBARDEF lump that adds
weapon slots 8 and 9 to the status bar arms section. As a source port should load that WAD
when ID24 compatibility is enabled, the status bar will be completely ready for a user to
enjoy the new weapons with.

Runtime environment

Status bars are to be rendered in a virtual 320x200 resolution when in fullscreen mode
(referred to as the virtual environment), presented at a 4:3 aspect ratio with rectangular
pixels at a 1:1.2 aspect ratio (ie 1.2 vertical units are required to maintain the 4:3 aspect
ratio). This is identical to the original Doom and Doom Il presentation. The virtual resolution
is enforced to allow equivalent presentations at any actual device output resolutions.

As non-fullscreen statusbars specify their height, the virtual resolution becomes 320 x
<statusbar height>. While coordinates are specified with a (0,0) origin representing the
top-left corner of the status bar, the bar itself is rendered to the screen using a virtual Y
coordinate of 200 - <statusbar height>.

Resources are allowed to render outside of the virtual environment. This allows for the
presentation to adapt to widescreen aspect ratios.

Elements are not allowed to specify coordinates outside of the virtual environment.
Elements are allowed to extend outside of the virtual environment and will be clipped
appropriately to the output resolution, but placement of elements must be inside the virtual
environment.

Update rate

Any logic that a status bar element requires to run (such as updating animations) must run at
the same tic rate as the game simulation (35Hz). Rendering can be handled independently
of framerate.

Selecting status bars to render

Selection of which status bar to render is to be handled by expanding the definition of the
screenblocks value. In the original Doom codebase, values 0 to 10 define how to scale the
3D first-person viewport, while value 11 indicates full screen rendering. Under this new
system, assuming zero-indexing of an array the index of a status bar to render is obtained
with the following formula:

barindex = Max(screenblocks - 10, 0);

Ports that do not allow selecting screenblocks above 11 should take care to further clamp
that value to a maximum of 11.

Scaling status bars to differing aspect ratios
A rendering target aspect ratio of less than 4:3 is treated differently for fullscreen and
non-fullscreen status bars:

e For fullscreen and non-fullscreen status bars, compact mode resolves to true and the
status bar definition can provide an alternative layout.

e For non-fullscreen status bars, the bar is scaled down in both X and Y axes until the
entire 320 virtual width of the bar fits on the screen.

The 3D viewport is expected to adapt to the scaling of the status bar.

A rendering target aspect ratio of greater than 4:3 has no effect on fullscreen statusbars. For
non-fullscreen status bars, the extra columns on either side of the status bar are filled with a
flat that is either defined by the status bar itself; or equivalent to the border graphic used in
each game (FLOORY7_2 for Doom; GRNROCK for Doom Il). This must be rendered using
the virtual 320x200 space and not the native render resolution, with the top left corner of the
flat occupying the (@, 200 - <statusbar height>) position.

Status bar number fonts
Status bar number fonts exist exclusively to represent numbers. They do not handle any
other glyphs outside of the minus and percentage symbols.

A number font uses standard Doom patches to render its glyphs.

The glyphs for numbers 0 through 9 must be resolvable from the WAD dictionary. If a minus
or percentage glyph is not defined, it is simply ignored.

A number font can have one of the following types:

e 0 - mono spaced, based off the width of the 0 glyph (default for Doom and Doom II)
e 1 -mono spaced, based off the widest glyph
e 2 - proportional, each glyph takes exactly its width

Monospaced fonts render at the cursor position and increment the cursor by the defined
width, giving the impression of gaps on the right side of each glyph for glyphs that are
narrower than the monospace width.

Status bar elements

Status bar elements are hierarchical in nature. They exist in a transform tree, where child
elements inherit the transform of their parent. The only values that are currently considered a
part of the transform are the X and Y position values.

Status bar elements can define an alignment. This exclusively controls how the elements it
renders are positioned from the transform. It does not affect the transform for child items.
The default of top and left renders the top-left corner of its element at the defined transform;
bottom and right renders the bottom-right corner of its element at the defined transform;
while the middle values for both horizontal and vertical render the middle of its element at
the defined transform. One horizontal and one vertical alignment is allowed to be defined per
element.

Each element is capable of containing any number of child elements.

Each element can render with or without a transparency map and a translation. The
transparency map is a lookup table as defined by the Boom specification; while a translation
is defined by the ID24 Translation formal specification.

Element types
The following element types exist for status bar definitions to use:

Canvas

Graphic
Animation

Face

Face Background
Number
Percentage

At the data definition level, each element must contain at least one definition for an element
type. Only the first entry in an element is considered. Any other element types are simply
ignored and not parsed. Editors as such only want to save out the data required for the
current element type rather than defining separate entries for each type.

Canvas element
A canvas element is an empty element that exists as a container for children elements.

Graphic element
A graphic element renders the defined patch at the transform’s location.

Animation element

An animation element sequentially displays the defined patch at the transform’s location.
Each frame has a duration which defines the minimum amount of time it must be rendered
for.

Face element

A face element is the portrait that animates and renders in the middle of Doom and Doom
II's original status bars. Only the face is rendered with this element; its background is
handled separately.

Face Background element
A face background element renders the background patch as retrieved from the current
player’s translation definition.

Number element
A number element renders the specified number, including its negative values if the specified
font has a minus glyph defined.

Percentage element

A number element renders the specified number with a percentage glyph on the right-hand
side of the number, including its negative values if the specified font has a minus glyph
defined.

Number types
The following types of numbers can be resolved by a Number and Percentage element via
the type field:

0 - current player’s health

1 - current player’s armor

2 - current player’s frags

3 - current player’'s ammo amount for the ammo specified by param

4 - current player’s ammo amount for the currently selected weapon

5 - current player’s maximum ammo amount for the ammo specified by param
6 - current player’'s ammo amount for the weapon specified by param

7 - current player’s maximum ammo amount for the weapon specified by param

Element conditions

A status bar element can have any number of conditions that must all resolve to true for both
that element and its child elements to render. When zero conditions are defined by
specifying null in the JSON document, a resolution of true is determined. Using an empty
array to define zero conditions is considered an error condition.

Element conditions do not stop the element from updating during the game tic, they only
stop the element from rendering.

The following conditions are available to a status bar element:

Type Description

0 Whether the weapon defined by param is owned

1 Whether the weapon defined by param is selected

2 Whether the weapon defined by param is not selected

3 Whether the weapon defined by param has a valid ammo type

4 Whether the selected weapon has a valid ammao type

5 Whether the ammo type defined by param matches the selected weapon’s
ammo type

6 Whether any weapon in a slot defined by param is owned

7 Whether any weapon in a slot defined by param not owned

8 Whether any weapon in a slot defined by param is selected

9 Whether any weapon in a slot defined by param is not selected

10 Whether the item defined by param is owned

11 Whether the item defined by param is not owned

12 Whether the current game version is greater than or equal to the feature level

defined by param

13 Whether the current game version is less than the feature level defined by
param

14 Whether the session type is equal to the type defined by param

15 Whether the session type is not equal to the type defined by param

16 Whether the game mode is equal to the mode defined by param

17 Whether the game mode is equal to the mode defined by param

18 Whether the hud mode is equal to the mode defined by param

The session type has the following values:

e 0 -single player
e 1 - cooperative
e 2 - deathmatch (any kind)

The game version and game mode parameters match those defined in the GAMECONF
specification.

The item parameters match those defined by the Pickup item type Thing field in the
IDHACKEDZ24 specification. Note that the following item types always resolve to false:

e -1-noitem

8 - health bonus
9 - stimpack
10 - medikit
11 - soulsphere

0 - message only

12 - megasphere
13 - armor bonus

The hud mode has the following values:

e (- standard layout
e 1 -compact layout

Data type definitions

root
Name Type Description
numberfonts array of An array of number fonts. Must not be null; must
numberfont | contain at least one entry.
statusbars array of An array of status bars. Must not be null; must
statusbar | contain at least one entry.
numberfont
Name Type Description
name string An identifier used to resolve this number font.
type integer One of the values matching the type enumeration
described in the number font section.
stem string A string representing the first few characters of each

glyph’s name in the WAD dictionary. Note that 3
characters is the maximum if you want to resolve
the minus and percent glyphs; longer stems are
allowed thanks to Doom and Doom Il requiring it for
the STYS number font.

statusbar

Name Type Description

height integer The height of this status bar in virtual units.

fullscreenrender | boolean Whether this statusbar is a fullscreen overlay or a

standard status bar.
fillflat string The name of the flat to fill the extended virtual
space with
children array of An array of child elements.
sbarelem
sbarelem

Name Type Description

canvas canvas Contents to describe this element as a Canvas. Can
be undefined.

graphic graphic Contents to describe this element as a Graphic. Can
be undefined.

animation animation | Contents to describe this element as an Animation.
Can be undefined.

face face Contents to describe this element as a Face. Can be
undefined.

facebackground | facebg Contents to describe this element as a Face
Background. Can be undefined.

number number Contents to describe this element as a Number. Can
be undefined.

percent percent Contents to describe this element as a Percent. Can

be undefined.

canvas, face, facebg

Name Type Description
X integer The virtual x position of this element.
Yy integer The virtual y position of this element.
alignment bitfield The alignment of this element’s rendered graphics.
tranmap string The name of a transparency map lump to resolve.
Can be null.
translation string The name of a translation to resolve. Can be null.
conditions array of A series of conditions to meet to render both this and
condition | all child elements. Can be null; an array length of 0 is
considered an error condition.
children array of An array of child elements. Can be null; an array
sbarelem |length of O is considered an error condition.
condition
Name Type Description
condition enum The type of condition to resolve, as described by the
table in the “Element conditions” section
param integer A parameter as described for each condition type.
graphic
Name Type Description
X integer The virtual x position of this element.
Yy integer The virtual y position of this element.
alignment bitfield The alignment of this element’s rendered graphics.
tranmap string The name of a transparency map lump to resolve.
Can be null.
translation string The name of a translation to resolve. Can be null.
conditions array of A series of conditions to meet to render both this and
condition | all child elements. Can be null; an array length of 0 is
considered an error condition.
children array of An array of child elements. Can be null; an array
sbarelem |length of O is considered an error condition.
patch string The name of a patch lump to resolve.

animations

Name Type Description
X integer The virtual x position of this element.
Yy integer The virtual y position of this element.
alignment bitfield The alignment of this element’s rendered graphics.
tranmap string The name of a transparency map lump to resolve.
Can be null.
translation string The name of a translation to resolve. Can be null.
conditions array of A series of conditions to meet to render both this and
condition | all child elements. Can be null; an array length of O is
considered an error condition.
children array of An array of child elements. Can be null; an array
sbarelem |length of O is considered an error condition.
frames array of An array of frames to be rendered in sequential order.
frame Must be an array of at least one element; anything
else is an error condition.
frame
Name Type Description
lump string The name of a patch lump to resolve.
duration number The minimum amount of time to display this frame in

seconds.

number, percent

Name Type Description
X integer The virtual x position of this element.
Yy integer The virtual y position of this element.
alignment bitfield The alignment of this element’s rendered graphics.
tranmap string The name of a transparency map lump to resolve.
Can be null.
translation string The name of a translation to resolve. Can be null.
conditions array of A series of conditions to meet to render both this and
condition | all child elements. Can be null; an array length of 0 is
considered an error condition.
children array of An array of child elements. Can be null; an array
sbarelem |length of O is considered an error condition.
font string The name of the number font to render this number
with.
type enum The number to resolve.
param integer The parameter to use for number resolution.
maxlength integer The maximum number of digits to render, including
the minus glyph and excluding the percentage glyph.

Reference implementation details

The SBARDEF files that come with extras.wad and id24res.wad contain the classic status
bar, a full screen overlay status bar, and a blank full screen. Demos will always use the last
status bar in an SBARDEF when loaded, so any custom SBARDEFs should also define a
blank fullscreen as the final statusbar entry.

