Interlevel Lumps formal specification 0.99.1

A way of defining background images for victory screens has existed in UMAPINFO for a
few years now. But it has never handled the animation capabilities that were on display in
the original three episodes from Doom. This specification documents the data format that
replicates the capabilities of Doom'’s victory screen animations.

Scope of features

This specification has been written to handle exactly what is required of the intermission
screens used in Doom and Doom II: Hell on Earth, whether they’re animated or static.
Additional features were deemed outside of the scope of this revision of the specification. It
has also been authored in such a way that only a single lump is required for both exiting a
level and entering a new one, in order to make it easier for content authors to manage the
presentation exactly as they deem fit.

JSON lump
This specification uses the JSON Lump 1.0.0 formal specification as the root of its data
storage, with a type of “interlevel” and a version of “1.0.0".

Minimum engine featureset
This specification applies to any limit-removing featureset or greater. While it is optional for
other valid featuresets, it is a requirement of the 1D24 featureset.

Terminology

While the code uses “intermission” to mean the victory screens (ie exiting level tallies and
entering level text/’you are here” display) and “finale” to refer to both the end-of-episode text
and graphics displayed, community standards have come to term the end-of-episode text as
“intermission”. As such, rather than reappropriating the term to match source code the
victory screens will now exclusively be referred to as interlevel screens. Any terminology
that uses interlevel refers to this point in the gamesim.

UMAPINFO additions

UMAPINFO previously provided the exitpic and enterpic lumps to define the
background of the interlevel screens. Rather than override the behavior of these values, this
specification adds two additional fields to any compatible version of UMAPINFO:

Name Type Description

exitanim string An interlevel background lump used for the score tally
screen

enteranim | string An interlevel background lump used for the “entering”
screen

These lumps are considered authoritative and override any exitpic and enterpic definitions.
Content authors are however encouraged to fill out both fields for ports that lack an
implementation for this specification. If an exitanim or enteranim’s target lump is not
correctly formed, this is considered an error condition. Falling back on exitpic and



enterpic in the event of an error is not allowed and is considered a non-compliant
implementation of this spec.

Ports that do not implement this specification are expected to ignore exitanim and
enteranim and present exitpic and enterpic as normal.

Runtime environment

The interlevel backgrounds are to be rendered in a virtual 320x200 resolution (referred to as
the virtual environment, presented at a 4:3 aspect ratio with rectangular pixels at a 1:1.2
aspect ratio (ie 1.2 vertical units are required to maintain the 4:3 aspect ratio). This is
identical to the original Doom and Doom Il presentation. The virtual resolution is enforced to
allow equivalent presentations at any actual device output resolutions.

Resources are allowed to render outside of the virtual environment. This allows for the
presentation to adapt to widescreen aspect ratios.

Elements are not allowed to specify coordinates outside of the virtual environment.
Elements are allowed to extend outside of the virtual environment and will be clipped
appropriately to the output resolution, but placement of elements must be inside the virtual
environment.

As these are backgrounds, every element is rendered under the graphics that the engine
renders for stats etc.

The map number accessible for condition checking is dependent on whether the victory
screen is currently displaying an exit animation or an enter animation. If it is an exit
animation, the map number corresponds to the map being played; if it is an enter animation,
the map number corresponds to the map about to be entered. The map number itself is
defined through other means, including but not limited to UMAPINFO, and is outside of the
scope of this document to define.

Non-deterministic environment
Interlevels are non-deterministic. In practice, this means the following:

e Any value that uses a random number generator (RNG) is not guaranteed to give the
same results on every instantiation.
o Using M Random from the Doom codebase satisfies this requirement.
e Time durations are not considered to be exact; however, implementations are
expected to give “as close as feasible” results.
o Rounding to the nearest tic satisfies this requirement.

Data types
As data is represented using the JSON lump standard, there are several object types that
need to be interpreted. The types defined are:

root
layer
anim
frame
condition



All values defined in these data types are to be read from the JSON document and set,
regardless of whether the declared functionality will use those values or not. If any of these
values cannot be read, it is to be considered an error condition.

Root definition

The root object describes a background image to be rendered first; a music track to be
played; and an array of layers to be rendered over the background image in sequential
order.

The backgroundimage lump is always rendered first. This is expected to be centered on

the screen, allowing for automatic adjustment for widescreen presentations. If this lump is
not defined or not found in the loaded WADs, it is considered an error condition.

The music lump plays in the standard music channel of the audio mix. If this lump is not
defined or not found in the loaded WADs, it is considered an error condition.

The layers array can be zero-length, resulting in an interlevel just displaying the
background image. This is handled with a null value in the JSON document. An array
declared with zero elements instead of using null is to be considered an error condition.

Layer definition

A layer is a collection of anims that are displayed in sequential order. Each layer can be
turned on or off by resolving an array of conditions. When a layer is turned off, none of its
anims update or render.

A layer must have a minimum of one anim. Less than one anim is considered an error
condition.

Anim definition

An anim is a collection of frames that are displayed in sequential order at a specified screen
coordinate. Each anim can be turned on or off by resolving an array of conditions. When
an anim is turned off, none of its frames update or render.

An anim must have a minimum of one frame. Less than one frame is considered an error
condition.

Frame definition
A frame is a graphic displayed on screen for a defined amount of time.

There are three types of frame times that can be specified:

e Infinite - A frame that is always displayed, and will never progress to the next frame
in an animation. duration and maxduration are ignored at runtime.

e Fixed - A frame that is displayed for an amount of time no less and no more than the
specified duration. A fixed frame must have a minimum duration of one rendered
image in the runtime environment. As such, a zero value for duration is to be
considered an error condition. maxduration is ignored at runtime.

e Random A frame that is displayed for an amount of time no less than the specified
duration and no more than the specified maxduration as determined by the
RNG, resulting in a frame that changes its duration every time it is displayed. A



random frame must have a minimum duration of one rendered frame. As such, a
zero value for duration is to be considered an error condition; and a

maxduration of lesser value than duration is to be considered an error condition.

When discussing the length of time of a frame, duration is assumed to mean one of these
three things and dependent on the values the user has set within the frame object.

A frame can also be specified to have a random first frame offset. When this functionality
is specified, the presentation code will use the RNG to reduce the duration of the frame if it
is the first frame displayed when an interlevel is instantiated, i.e. on a one-time only
basis. The new duration generated must have a minimum of one rendered frame, and a
maximum of the original duration resolved. When this frame is encountered again, it will
follow the normal duration rules.

Condition definition
A condition is a test that must pass to resolve to true; It otherwise resolves to false.

An array of conditions must all resolve to true for that entire collection to resolve to true;
any failure makes the entire condition array resolve to false - that is to say that the entire
collection resolves with logical and operations.

When zero conditions are declared in a condition array, the condition array always
resolves to true. This is handled with a null value in the JSON document. An array
declared with zero elements instead of using null is to be considered an error condition.

Conditions and condition arrays are resolved on interlevel instantiation. They do not
resolve at any other time, and any implementation using them in such a manner is to be
considered a non-compliant implementation of this spec.

Data type definitions

root
Name Type Description
music string Lump name of music to be looped while this
background lump is displayed.
backgroundimage | string Lump name of the patch to be rendered first before
any layers.
layers array of An array of anim elements to be rendered on top of
layer the backgroundimage. Can be null.
layer
Name Type Description
anims array of anim | An array of anim elements to be rendered on top of

the preceding layers.

conditions array of An array of conditions that must be met for this layer




condition to be displayed. Can be null.

anim
Name Type Description
X integer The x position of this animation.
Yy integer The y position of this animation.
frames array of An array of frame elements that are iterated on
frame according to their parameters, and displayed
sequentially over time.
conditions array of An array of conditions that must be met for this layer
condition to be displayed. Can be null.
frame
Name Type Description
image string The patch to be rendered
type integer Bitfield with the following values:
e (0x0000: None
e (0x0001: Infinite duration
e (0x0002: Fixed duration
e 0x0004: Random duration
e 0x1000: Random first frame offset
Infinite duration, fixed duration, and random
duration correspond to the definitions found in the
Frames subsection and are in an exclusive binary
bit group. Only one of these bits can be selected at
a time; zero bits selected or more than one bit
selected is to be considered an error condition.
duration number The number of seconds that this frame is displayed
for.
maxduration number The maximum number of seconds this frame is
displayed for if random duration is selected in the
type field.
condition
Name Type Description
condition integer Enumeration with the following values:
e 0: None
e 1: Current map number is greater than the




param value
e 2: Current map number is equal to the param
value
e 3: The map number corresponding to the
param value has been visited
4: The current map is not a secret map
5: Any secret map has been visited
6: The current screen is the tally screen
7: The current screen is the “entering”
screen
This enumeration determines the test that will be run
when the parent object is instantiated.

param integer A value that this condition checks against, as
defined in the condition field.

Reference implementation details

The implementation was written to be the bare minimum required to handle Doom’s
interlevel animations in a generic manner. The specification was derived from this
implementation, however there are elements that you will see in the code that fall outside of
this specification. This is intentional, and the following elements are described below.

Win screens

The code for the win screens (wi_*. *) has been entirely rewritten to handle the data
structures generated by this specification. How a port implements these screens is entirely
up to the code author; likewise, how they translate the data defined by this specification into
their own internal formats is beyond the scope of this specification.

Frame type
The type field in the frame definition has one other bitfield defined internally:

e (0x8000000: Adjust for widescreen, ie centre the image at (160, 0) in the virtual
environment

With this, a dummy animation is created solely to render the backgroundimage lump from
the root definition without needing to special case the render loop. As it is an internal flag, it
can be changed at any time pending future specifications; and as the JSON Lump
specification does not support forward compatibility, this value should be considered entirely
free for use in future specifications.

Conditions
There is one additional condition used in the reference implementation:

e Whether this element fits within the virtual space, and is the first element of the group
specified by param to do so

This is used exclusively as a shortcut for the hardcoded tables to handle the “You are here”
pointer graphics in Doom episodes 1 through 3. Rather than painstakingly code each
separate element, this shortcut means it can intelligently decide whether to use the
left-pointing or right-pointing element. The implementation code however probably breaks for



anything outside of this specific usecase. It is also made entirely redundant by layout tools.
Do not attempt to copy the implementation or the condition, as it is precisely the kind of
esoteric “implementation specific’ feature that should be left entirely out of the collective
consciousness.

Durations

Durations have been intentionally specified as seconds for futureproofing purposes. As this
specification defines a non-deterministic visual-only element, there is no particular need for
the animations to adhere to Doom’s 35Hz tic rate. The reference implementation however
does adhere to the tic rate, so values are converted to tics on load and stored in the relevant
structures.



