ID24HACKED formal specification 0.99.1

The creation of the ID24 standard has resulted in an expansion of the capabilities of
Dehacked patches. This specification details the additions and changes required to support
Dehacked patches under the 1D24 featureset.

Minimum engine featureset
This specification applies to any ID24 supporting source port.

Baseline features
ID24HACKED is a superset of the following Dehacked features:

DeHackEd/Vanilla Doom
Boom

MUSINFO

MBF

DEHEXTRA

MBF21

DSDHACKED

It includes and supports everything defined by those ports and specifications. The above list
is also considered an order, from least features to most features with each featureset being a
superset of the prior one, for the sake of determining a featureset for the engine to run in.

Identifying an ID24HACKED patch
There are two primary methods for identifying an ID24HACKED patch:

e Doom version is set to 2024
e Encountering anything specified in this document that is not defined in the baseline
features

For the sake of convenience, a Dehacked implementation should be able to report the
highest level featureset encountered so that the engine can determine whether it should
consider the patch valid.

Dehacked patch initialisation order

While MBF stated that Dehacked patches from a command line are to be considered first,
this behaviour conflicts with the accumulation requirements specified above. The order for
Dehacked patch initialisation is now as follows:

e Every DEHACKED lump found in the WAD dictionary, in order from first loaded WAD
(including the IWAD) to the last loaded WAD.

e Any .deh files encountered on the command line in the order specified (if the port
supports loading from the command line).

This also applies retroactively to the previously stated baseline features.

DEHACKED limitation removals
It has become apparent that the requirements for id Software and/or its affiliates to add new
features to its commercial Doom and Doom Il releases and taking existing community

standards into account would result in potentially breaking any number of user mods. The
following limitation removals are designed to sidestep this while allowing current and future
commercial releases to add new features as required without this concern hanging
overhead.

ID24HACKED builds on the DSDHACKED specification allowing (2731 - 1) positive
indices for all supported items (frame, thing, sprite, sound). ID24HACKED extends that to
allow just as many negative indices, giving a range of (2732 - 1) valid values for any index
(frame, thing, sprite, sound, weapon, ammo) while also allowing custom string mnemonics
starting with USER_.

The range of possible values is divided up amongst a few purposes, As well as limitations
placed on a DEHACKED patch, those purposes are illustrated in the following table:

First index Last index Create? | Modify? Purpose

0x00000000 | Ox7FFFFFFF Original valid range.

0x80000000 | Ox8FFFFFFF Implementation defined. Essentially
a place for source ports to define

internal objects.

0x90000000 | OxBFFFFFFF Reserved for exclusive use by id
Software and its affiliates. Any

future specifications published by id
Software and/or its affiliates will use

indices within this range.

0xC0000000 | OxFFFFFFFE Reserved for the community. Any
future community specifications that
are published should use indices

from within this range.

OxFFFFFFFF | OXFFFFFFFF Invalid index.

When dealing with 16-bit values such as the thing type number found in map definitions
(specified by the ID # field in a Thing definition), the following values apply:

First index Last index Create? | Modify? Purpose

0x0000 Ox7FFF Original valid range.

0x8000 Ox8FFF Implementation defined. Essentially
a place for source ports to define
internal objects.

0x9000 OxBFFF Reserved for exclusive use by id

Software and its affiliates. Any
future specifications published by id
Software and/or its affiliates will use
indices within this range.

0xC000 OxFFFE Reserved for the community. Any
future community specifications that
are published should use indices

from within this range.

OxFFFF OxFFFF Invalid index.

The community range is not a free-use-by-anyone range. It is designed to be a range that
the entire community can agree upon and implement in every source port. Any usage of this
range that is not formally agreed upon by the community is considered in violation of ID24
and any and all future specifications based upon this work, and at best should be considered
“‘in development for consideration by the community”.

String mnemonics

String mnemonics starting with USER__ are to be added to the mnemonic resolution table.
There is no limitation to what these mnemonics can be called outside of the requirement to
begin with USER _.

In addition, the following mnemonics and their corresponding strings have been added:

Mnemonic String

ID24 GOTINCINERATOR You got the incinerator!
ID24_GOTCALAMITYBLADE | You got the calamity blade! Hot damn!
ID24 GOTFUELCAN Picked up a fuel can.
ID24_GOTFUELTANK Picked up a fuel tank.
ID24 COLOR_GREEN Green
ID24_COLOR_INDIGO Indigo
ID24_COLOR_BROWN Brown
ID24_COLOR_RED Red
ID24_COLOR_YELLOW Yellow
ID24_COLOR_BLUE Blue
ID24_COLOR_NAVY Navy
ID24_COLOR_MAGENTA Magenta

Any unknown mnemonics encountered in a Dehacked file should be ignored.

Codepointer verification
It has always been possible to specify codepointers intended for things in a frame intended
for player sprites and vice versa. While it is not an expectation to catch this at parse time, it

is expected that code errors at runtime if it tries to execute a codepointer not intended for the
current object.

Miscellaneous values changes
Due to the expansion of Dehacked capabilities, the following values now set values in the
built-in weapon and ammo slots rather than global values:

e BFG Cells/Shot - updates the Ammo per shot field in the BFG weapon entry
e Initial Bullets - updates the Initial ammo field in the clip/bullet ammo entry

New object allocation

Note that while DSDHACKED specifies that indices allocate objects in a range from lowest
index to highest index, this requirement is removed from ID24HACKED. A Dehacked patch
contains perfect information allowing you to pre-determine exactly which indices are in use
after a patch has been parsed. Further, allowing indices in the negative range either requires
funky C array arithmetic or a very large array by reinterpreting that negative value at a
bitwise level to be a positive value.

As such, ID24HACKED parsing only allocates objects for an index when they are
encountered as a new object definition; or whenever a field that refers to those objects via
an index is encountered and it was not previously defined.

One notable exception to the allocation rule is for action pointer parameters. As each value
in a DeHackEd patch can be defined in any arbitrary order, to simplify parsing logic each
Thing, Frame, and Sound parameter is resolved after a Frame has finished parsing.

New weapons, ammo types, things, frames, sprites, and sounds

A complete table of all new additions to the internal tables can be found in <a separate file
stored with these specifications>. These tables must be compiled and constructed into a
master list - known as the in-order table - and inserted into the corresponding associative
map before allocating new things from a DeHackEd patch.

Table construction

Each in-order table has a related associative map used for resolving objects via an index.
These associative maps are to be used in place of the existing tables. Associative maps
exist for each of the following datatypes:

Thing
Frame
Sprite
Sound
Weapon
Ammo

An extra associative map is maintained for the ID # field of a Thing definition (referred to
as the spawn map). Spawning a thing is now resolved from the spawn map instead of
iterating through the in-order table.

The in-order tables are constructed in the following way for every data type except things:

e Original built-in tables in order
e |D24 tables in order

Things are constructed the following way:

e Original built-in tables in order
MUSINFO 14101-14064 entries in order
e [D24 tables in order

Any new entries defined by the DeHackedPatch must be placed after the entries as
described above and inserted into the associative map.

At program initialisation and after any DeHackEd patch is loaded, each associative map
must be rebuilt with the following logic:

e Clear every associative map
e For each in-order table
o Create a copy and sort each item in ascending order by its identifying index
m [fthe item is a Thing, sort any item with matching identifying indices
by ID #
m If the related associative map is the spawn map, do not sort the
in-order table at all
o lIterate through each item in the in-order table
m If this item does not exist in the related associative map, then insert
it into the associative map

New objects are to be pushed to the back of the in-order tables; and also added to the
associative map immediately in order for DeHackEd patches to correctly refer to objects
defined earlier in the patch. Note that while the order is not important during a DeHackEd
patch, it is important for the game simulation to maintain backwards compatibility with vanilla
(in particular, the spawn map rules are designed to work . You don’t want to skip the
associative map reconstruction step.

Accumulating Dehacked patches

While it has always been possible to load DeHackEd patches on top of one another, at best
this has always been undefined behaviour. DeHackEd as originally specified has an
expectation that it is operating on a vanilla Doom set of tables. It makes no attempts to verify
if this is true.

Due to needing to avoid undefined behaviour for the sake of running on video game console
platforms, DeHackEd patches can now define a series of hash values that are calculated
from the tables before any given DeHackEd patch is applied. These hash values indicate
that a Dehacked patch has been tested and confirmed to work with previously loaded
DeHackEd patches. This is applied retroactively to every previous DeHackEd specification -
an ID24 capable port can consider and process this regardless of the feature level a mod
requests/supports and is preferred to be the default way to handle DeHackEd patches (with
it being an outright requirement in the official versions of Doom and Doom Il sold in stores of
all kinds).

As this is a lengthy topic, further information on hashing is provided in a separate document.

Data types
Each data type used in the tables following this section correspond to the following:

string - C-style null-terminated string, stored as a pointer
bitfield - 32-bit integer

integer - 32-bit signed integer

enum - 32-bit signed integer

bool - 8-bit integer

fixed - 32-bit signed integer

Frame additions
A frame can now be rendered with a transparency lump. This lump applies to both thing and
player sprite states.

IDHACKED24 adds the following parameters to a Frame definition:

Name Type Default Description

Tranmap string null The name of a transparency map lump to use
when rendering the sprite associated with this
frame.

Note: While a Thing can use the built-in
transparency map with the TRANSLUCENT
flag, a frame’s Tranmap will override this.

Frame defaults
All frames defined by prior specifications are to have default values set to those defined in
the fields table; all used-defined things likewise will have those same default values.

Thing additions
Things have had a sizable expansion of functionality in IDHACKED?24.

Things now have some capacity to control their behaviour when respawning monsters is
turned on (either via command line or the Nightmare! difficulty setting). They can control if
they’re allowed to respawn, as well as how long they must stay dead at a minimum and their
chances of respawning.

Special items previously had the ability to remain in the world on collection as a hardcoded
feature of certain multiplayer modes. A thing is now able to explicitly define this behavior for
single player, cooperative, and deathmatch modes.

Dropped items are no longer hardcoded to Thing type. Any thing is able to define a thing
index representing the item to drop on death. Note that when a source port is not operating
with 1D24 compatibility that vanilla behaviour must be retained.

Special item collection is no longer hardcoded to sprite names. As such, a full suite of values
to handle collection is exposed. When a thing does not define any of the 1D24 values for item
collection with the exception of the Pickup message, the vanilla behaviour is retained. Any

item with a Pickup message overwrites the defined vanilla message regardless of

behavior.

Note that when a source port is not operating with ID24 compatibility, vanilla behaviour must

be retained.

IDHACKED24 adds the following fields to a Thing definition:

Name Type Default Description

ID24 Bits bitfield | O New flags to control ID24 thing features.

Min respawn |integer |420 The number of tics to wait when respawning

tics monsters is turned on before attempting to
respawn.

Respawn dice |integer |4 The value that a RNG value (between 0 and 255)
must be greater than to allow this item to
respawn.

Dropped item |integer | -1 The thing ID to spawn on death.

Pickup ammo |integer |-1 The ammo ID to pick up when collecting this

type SPECIAL thing.

Pickup ammo | bitfield | -1 The ammo category to resolve a quantity from

category when collecting this SPECIAL thing.

Pickup integer | -1 The weapon ID to pick up when collecting this

weapon type SPECIAL thing.

Pickup item |enum |-1 The powerup to pick up when collecting this

type SPECIAL thing.

Pickup bonus | integer |6 A value to add to the screen flash counter when

count collecting this SPECIAL thing.

Pickup sound |integer |0 The sound ID to play when collecting this
SPECIAL thing.

Pickup string null The string mnemonic to resolve and display

message when picking up this SPECIAL thing.

Translation |string |null The translation lump to use when rendering this
thing.

ID24 bits

The following values apply to the ID24 bits bitfield (with mnemonics specified in []
brackets) and are allowed to be combined with any other value:

e 1 [NORESPAWN] - Does not respawn when respawning monsters is turned on
2 [SPECIALSTAYSSINGLE] - Special remains in the world when collected in single
player mode

e 4 [SPECIALSTAYSCOOP] - Special remains in the world when collected in
cooperative multiplayer mode

e 8 [SPECIALSTAYSDM] - Special remains in the world when collected in deathmatch
multiplayer mode

Pickup ammo category
The following values apply to the Pickup ammo category bitfield and are exclusive to
one another:

e 0 -clipammo

e 1-box ammo

e 2 -weapon ammo
e 3 - backpack ammo

The following values apply to the Pickup ammo category bitfield and are allowed to be
combined with any other value:

e 4 -dropped
e 8 - deathmatch

A value of -1 in the Pickup ammo category bitfield means that there is no category and
overrides any bit set as described above.

Pickup item type
The following values apply to the Pickup item type enumeration:

-1 - no item

0 - message only

1 - blue keycard

2 - yellow keycard

3 - red keycard

4 - blue skull

5 - yellow skull

6 - red skull

7 - backpack

8 - health bonus

9 - stimpack

10 - medikit

11 - soulsphere

12 - megasphere

13 - armor bonus

14 - green armor

15 - blue armor

16 - computer area map
17 - light amplification goggles
18 - berserk

19 - partial invisibility
20 - radiation shielding suit
21 - invulnerability

Thing defaults
All things defined by prior specifications are to have default values set to those defined in the
fields table; all used-defined things likewise will have those same default values.

However, the MF_TRANSLUCENT flag added to select things by Boom tables is to be
removed from the tables entirely. The flag must still be allowed to be set by a DeHackEd
patch, but the default tables must reflect vanilla Doom for all relevant values.

Some exceptional default values must be set on certain hardcoded things. These are:

Thing ID Field Value

MT_MISC4 ID24 Bits SPECIALSTAYSCOOP
MT_MISC5 ID24 Bits SPECIALSTAYSCOOP
MT MISC6 ID24 Bits SPECIALSTAYSCOOP
MT MISC7 ID24 Bits SPECIALSTAYSCOOP
MT MISCS8 ID24 Bits SPECIALSTAYSCOOP
MT_MISC9 ID24 Bits SPECIALSTAYSCOOP

MT POSSESSED | Dropped item | MT CLIP

MT SHOTGUY Dropped item | MT_SHOTGUN

MT CHAINGUY |Dropped item | MT _CHAINGUN

MT WOLFSS Dropped item | MT CLIP

Weapon additions
It is now allowed to define weapons not previously defined by the built-in tables.

Weapons can now define which slot they live in, as well as the priority for selection when
pressing the key for that slot. The weapon with the highest slot priority in any given slot will
be selected first when activating that slot; subsequent activations will descend down the list
of weapons for that slot in decreasing priority.

Weapons can also define their place in the autoswitch priority list. When autoswitching is
activated, the weapon with the highest priority will be considered first and will then descend
down the list of weapons in decreasing priority.

Weapons can now define whether they are in the player’s inventory on respawn, as well as
which weapon should be the first one raised. Note that in the case of multiple weapons
defining themselves as the first one raised, only the last one encountered in declaration
order will be raised.

Carousel icons are an optional feature used by the official releases of Doom and Doom I,
primarily to assist with weapon selection on a control pad. It is entirely at a port’s discretion if

it implements this feature; however, a port must still parse and set all carousel fields correctly
regardless.

The original Doom disallowed selecting the fist weapon when a chainsaw was owned and a
berserk pack was not picked up in the current level. To replicate - and expand upon - this
ability, a few additional fields with the following logic have been included:

You start being allowed to select this weapon if you own it
If No switch with owned weapon is defined and you own that weapon, you are
disallowed from selecting this weapon

e I[fAllow switch with owned weapon is defined and you own that weapon, you

are allowed to select this weapon
e If you are allowed to select this weapon and if No switch with owned itemis

defined and you own that item, you are disallowed to select this weapon

e |If you are disallowed to select this weapon and if Allow switch with owned
itemis defined and you own that item, you are allowed to select this weapon

e |[f you are still allowed to select this weapon, select this weapon

To resolve the above logic, the weapon index resolves via the weapon lookup table; and the
item index resolves via the table described in “Pickup item type”.

Note that wp_nochange must be redefined to -1 in code to be compliant with the above
index range definitions.

IDHACKED24 adds the following parameters to a weapon definition:

Name Type Default Description

Slot integer | -1 Which slot to bind this weapon to.

Slot integer | -1 Priority value for selection in this slot.
Priority

Switch integer | -1 Priority value when autoswitching.

Priority

Initial bool false Whether this weapon is available to the player
Owned on respawn.

Initial bool false Whether this weapon is the one to be raised on
Raised respawn.

Carousel string | “SMUNKN?” | A patch to be used as a small icon for weapon
icon selection wheels/carousels/etc.

Allow switch | integer | -1 Allow weapon switching according to described
with owned logic.

weapon

No switch integer | -1 Disallow weapon switching according to

with owned described logic.

weapon

Allow switch |integer | -1 Allow weapon switching according to described
with owned logic.

item

No switch integer | -1 Disallow weapon switching according to

with owned described logic.

item

Weapon defaults
All used-defined weapons will have defaults set corresponding to the above table in addition
to all defaults for previous specifications.

For all built-in weapons, the following values must be set in addition to all defaults for
previous specifications:

Weapon Field Value
wp_fist Slot 1
Slot Priority 0

Switch Priority 0

Initial Owned true

Initial Raised false

Carousel icon "SMFIST"
wp_pistol Slot 2

Slot Priority 0

Switch Priority 6

Initial Owned true

Initial Raised true

Carousel icon "SMPISG"
wp_shotgun Slot 3

Slot Priority 0

Switch Priority 7

Initial Owned false
Initial Raised false
Carousel icon "SMSHOT"

wp_chaingun Slot 4

Slot Priority 0

Switch Priority 8

Initial Owned false

Initial Raised false

Carousel icon "SMMGUN"
wp_missile Slot 5

Slot Priority 0

Switch Priority 4

Initial Owned false

Initial Raised false

Carousel icon "SMLAUN"
wp_plasma Slot 6

Slot Priority 0

Switch Priority 10

Initial Owned false

Initial Raised false

Carousel icon "SMPLAS"
wp_bfg Slot 7

Slot Priority 0

Switch Priority 2

Initial Owned false

Initial Raised false

Carousel icon "SMBFGG"
wp_chainsaw Slot 1

Slot Priority 1

Switch Priority 5

Initial Owned false

Initial Raised false

Carousel icon

"SMCSAW"

wp_supershotgun | Slot 3

Slot Priority 1

Switch Priority 9

Initial Owned false
Initial Raised false
Carousel icon "SMSGN2"

Ammo additions
It is now allowed to define ammo types not previously defined by the built-in tables.

Every aspect of an ammo type is now customisable, and does not rely on the vanilla
behaviour of multiplying ammo values to determine how much ammo is in a box, a weapon,
or a backpack.

The skill multiplier values can now be defined independently for each skill, and round down
the resulting value to get a whole integer value.

Note that am_noammo must be redefined to -1 in code to be compliant with the above index
range definitions.

IDHACKED24 adds the following parameters to an ammo definition:

Name Type Default Description

Initial ammo |integer |0 How much of this ammo the player receives on
respawn.

Max upgraded |integer |0 The value that the maximum amount of ammo is

ammo set to on collecting a backpack.

Box ammo integer | 0 How much ammo to receive when collecting a

box with this ammo type.

Backpack integer | 0 How much ammo to receive when collecting a
ammo backpack.
Weapon ammo | integer |0 How much ammo to receive when collecting a

weapon with this ammo type.

Dropped ammo |integer |0 How much ammo to receive when collecting a
dropped clip with this ammo type.

Dropped box |integer |0 How much ammo to receive when collecting a
ammo dropped box with this ammo type.

Dropped integer | 0 How much ammo to receive when collecting a
backpack dropped backpack.

ammo

Dropped integer |0 How much ammo to receive when collecting a

weapon ammo dropped weapon with this ammo type.

Deathmatch integer | 0 How much ammo to receive when collecting a

weapon ammo weapon with this ammo type in deathmatch
modes.

Skill 1 fixed 131072 The multiplier to apply to all collected ammo

multiplier (2.0) counts on skill 1 (I'm Too Young To Die)

Skill 2 fixed 65536 The multiplier to apply to all collected ammo

multiplier (1.0) counts on skill 2 (Hey, Not Too Rough)

Skill 3 fixed 65536 The multiplier to apply to all collected ammo

multiplier (1.0) counts on skill 3 (Hurt Me Plenty)

Skill 4 fixed 65536 The multiplier to apply to all collected ammo

multiplier (1.0) counts on skill 4 (Ultra-Violence)

Skill 5 fixed 131072 The multiplier to apply to all collected ammo

multiplier (2.0) counts on skill 5 (Nightmare!)

Per ammo and Max ammo

If the only fields set in a weapon entry are Per ammo and/or Max ammo, then a Dehacked
parser is expected to fill out the the following fields in the a manner consistent with vanilla

ammo calculations (ie integer operations, meaning all divides are rounded down), in order:

Value New value

Max upgraded ammo Max ammo * 2

Box ammo Per ammo * 5
Backpack ammo Per ammo

Weapon ammo Per ammo *2
Dropped ammo Per ammo /2
Dropped box ammo Box ammo /2
Dropped backpack ammo Backpack ammo /2
Dropped weapon ammo Weapon ammo /2
Deathmatch weapon ammo Per ammo *5

Note that this logic also applies to accumulative Dehacked patches. Whether an ammo
definition has previously been created/modified by Dehacked (or is from an internal table) is
not considered. As such, ammo definitions that expect to be accumulative in ID24 will work
best by explicitly providing every value required.

