JSON Lump formal specification version 1.0

A requirement to store data in JSON format has become needed. This document specifies
how any JSON formatted data must be described when inserted into a Doom WAD file.

Rather than just be a JSON document containing the data relevant to a given feature, it is
expected for verification and versioning purposes that any lump containing JSON data will
provide some common information that both the engine and toolsets can support. A standard
header is thus defined that any Doom source port can read and interpret to make base-level
decisions on.

JSON ISO specification

JSON lumps are expected to support the ISO/IEC 21778:2017 standard for JSON data. It is
expected to be strictly adhered to. Any fields that fall outside of the scope of that standard
(including comments) are to be considered an error and result in an invalid JSON document.

Identifying JSON lumps

What is and isn't a JSON lump at a name level is outside of the scope of this specification. It
is entirely up to the specifications for JSON-based lumps to define naming conventions for
those lumps.

Once you have the lump data in memory, a JSON lump must be identified solely by
attempting to parse it as a JSON document. Your JSON implementation must immediately
return a fail if it is not a correctly-formatted JSON document.

For lumps that have multiple existing types (ie binary formats, text, etc), JSON is to be
considered the first class citizen and must attempt to be parsed first.

Note that attempting to shortcut this requirement by searching for the first non-whitespace
character and matching it to '{" is not supported and is not to be implemented. Many binary
formats used by the Doom engine start off with little-endian values that can hit the binary
value of 123 that the {' character is encoded at in both ASCIl and UTF-8 standards. Either
attempt to parse a full JSON document, or only use the original handlers.

JSON structure

The root node of a JSON lump is required to have all of- and only- the values described
below. Any values encountered not specified in the below table are to be considered an error
condition and result in an invalid JSON document.

All values have a default of null. Any values not loaded thus resolve to null, and are to be
considered an error condition and result in an invalid JSON document.

Any values that do not conform to specified types are to be considered an error condition
and result in an invalid JSON document.

Any JSON data handler encountering a version higher than expected must consider it to be
an error condition and result in an invalid JSON document. Forward compatibility is not
supported through this requirement, only backward compatibility.

Name JSON type | Description

type string The name of the type of data this lump contains. Used for
verification purposes at engine runtime; used by editors to
determine how to handle the lump.

This value must be lowercase; have one character minimum;
and consist of letters, numbers, underscores, and dashes
only. The regex string ~ [a-z0-9 _-]1+$ should thus result in
an exact match with the provided value.

version string The version for the specified type. Expected to take the
format of “<major>.<minor>.<revision>". The regex string
A (\d+)\. (\d+) \. (\d+) $ should thus result in an exact
match and three groups with the provided value.

metadata | object A data field designed to be used by editors. Its existence
must be verified at engine runtime; and its contents must be
ignored at engine runtime.

data object The data representing the specified type. The format of this
block is out of the scope of this document, and intended to be
defined exclusively by any data formats wanting to base
themselves on JSON. This object is thus used as the root
node for any custom JSON data handler, any handlers as
such must refer to the type of this object as root. Must not
be null.

metadata structure

While the metadata object must be ignored at runtime, the contents of the metadata object
must contain a few common values. Any tool parsing this block can thus rely on these fields
existing, and not need to deal with special-case handlers for the way other tools wish to
work.

Each field has no default value. Null is an acceptable default value for verification purposes.
Any metadata block not containing all of the following entries must be considered invalid

Any additional values not defined here are both valid and outside of the scope of this
document, and are to be considered “implementation defined” for the purposes of this
document.

Name

JSON
type

Example

Description

author

string

Ethan Watson

The name(s) of the
author(s) of this lump.

timestamp

string

1993-12-10T00:30:00-06:00

The timestamp representing
when this lump was last
modified, formatted to
RFC3339 specifications.
The example is a timestamp
representing roughly when
the Doom shareware
episode was first available
for the public to download.

application

string

DEU 5.21

The name of the application
used to create this lump.
While it is strongly
recommended to use an
application and not
hand-editing JSON, if you
insist on hand-editing things
then by all means brag
about it here.

Versioning
The revision field of a version is meant primarily for bug fixes and alterations to a
published standard. Any additions or removals of features should be saved for a minor
version; however, it is up to the author’s discretion as to whether that is a big enough
functionality change to be considered a major version change.

Requirements of specifications based on the JSON Lump specification
Preferably at the top of your specification, you must define the following:

JSON Lump version specification that your specification is based on
The value that the type field must be set to

The value that the version field must be set to
A definition for a root object that is stored in the data field

Reference implementation details

APl implementation
The entrypoint to the JSON handling API looks like:

jsonlumpresult t M _ParseJSONLump(lumpindex_t lumpindex, const char*
lumptype, const JSONLumpVersion& maxversion, const JSONLumpFunc& parsefunc

)5

Upon successfully validating the above specification, M_ParseJSONLump will then invoke
pasefunc with the node representing the data field. In general, it is invoked with a lambda
that captures a reference to an output value. This allows M_ParseJSONLump to provide error
reporting as a return value without resorting to exceptions. The closure created to capture
the reference is also quite small, and is effectively no more costly than invoking a virtual
method on a class.

JSONLumpVersion struct

The JSONLumpVersion struct contains numerical representations of the major, minor, and
revision fields. It also contains a devversion field. This is intended to be used
exclusively during development of a new revision of a feature. As it is not serialised
anywhere or specified in the standard, this value should never be relied on for a published
specification or data that relies on any given version of a specification.

