
‭ID24 formal specification 0.99.1‬
‭As a part of developing features for the new Doom + Doom II release, certain features were‬
‭needed in order to make development easier and to provide a solid foundation for any and‬
‭all future releases. To collect all these features in one place that source ports can implement‬
‭and use, a new feature specification dubbed ID24 has been created.‬

‭Baseline features‬
‭ID24 is a superset of the following standards and features:‬

‭●‬ ‭Vanilla Doom‬
‭●‬ ‭Boom‬
‭●‬ ‭MUSINFO‬
‭●‬ ‭MBF‬
‭●‬ ‭DEHEXTRA‬
‭●‬ ‭MBF21‬
‭●‬ ‭DSDHACKED‬
‭●‬ ‭UMAPINFO‬

‭A complete ID24 implementation requires support for those standards and features.‬

‭For simplicity’s sake, these features are also enumerated in the following order, from the‬
‭least amount of features to the most amount of features and referred to as a‬‭feature level‬‭:‬

‭●‬ ‭Doom 1.9‬

‭●‬ ‭Limit Removing (with UMAPINFO)‬

‭●‬ ‭Limit Removing With Bug Fixes‬

‭●‬ ‭Boom 2.02‬

‭●‬ ‭complevel 9 (with MUSINFO)‬

‭●‬ ‭MBF‬

‭●‬ ‭DEHEXTRA‬

‭●‬ ‭MFB21‬

‭●‬ ‭DSDHACKED‬

‭●‬ ‭ID24‬

‭This ordering is important for a few features described by the ID24 specification.‬

‭JSON lumps‬
‭A key feature that all new data formats use is the JSON Lump specification. Rather than‬
‭create a new data format for each new data type, a standard JSON root element has been‬
‭created that can be parsed and interpreted by both tools and source ports. As a‬
‭standardised format, this cuts down on the amount of work required to implement new‬
‭datatypes and provides a simple way to support new datatypes in the future.‬

‭Major features‬
‭Each major feature of ID24 is covered in a separate document. These features are:‬

‭●‬ ‭DEMOLOOP - a way to customise the Doom demo loop‬
‭●‬ ‭Finale lumps - a way to customise Doom finales, and allow continuing to another‬

‭map from any finale‬



‭●‬ ‭GAMECONF - a way to describe how to set up the runtime environment of any WAD‬
‭●‬ ‭Mapping additions - new linedef types and thing numbers for mappers to use‬
‭●‬ ‭ID24HACKED - extensions to DeHackEd, plus a way to verify valid DeHackEd states‬

‭before parsing additional DeHackEd lumps‬
‭●‬ ‭Interlevel lumps - a way to define background animations on victory screens‬
‭●‬ ‭SBARDEF - a way to create custom status bars‬
‭●‬ ‭SKYDEFS - a way to create custom skies, including Doom 64 fire skies‬
‭●‬ ‭Translations - a way to create new translations for palette swapping‬

‭New placeable things‬
‭Perhaps of most interest to the community, Doom + Doom II’s new episode Legacy of Rust‬
‭includes a suite of new monsters, decorations, and weapons for use in your maps. These‬
‭new things are exposed to everyone via a new set of table entries that do not conflict with‬
‭any previous community standard or usage of DeHackEd indices.‬

‭Required data‬
‭All required data to support the‬‭ID24‬‭specification‬‭is contained within the‬‭id24res.wad‬‭file.‬
‭As this is a commercial product, note that illegal redistribution of this file is covered by‬
‭normal copyright laws. Source ports should use their normal IWAD resolution rules to locate‬
‭and load this WAD before the main IWAD when‬‭ID24‬‭compatibility‬‭is enabled.‬

‭Music formats‬
‭A complete‬‭ID24‬‭implementation supports the following‬‭additional audio formats for music‬
‭playback:‬

‭●‬ ‭OGG Vorbis‬
‭●‬ ‭Tracker‬

‭Future revisions‬
‭Future revisions of any part of the ID24 specification and feature set will incur the following‬
‭version number changes for the following reasons:‬

‭●‬ ‭Major - breaking changes, not backward compatible‬
‭●‬ ‭Minor - additions and minor changes‬
‭●‬ ‭Revision - bug fixes and clarifications‬

‭As ID24 aims to be a stable feature set, major revisions will aim to be restricted to a new‬
‭feature set specification.‬

‭Guiding principles for ID24 specifications‬
‭As a set of features developed for a commercial product, ID24 needed to satisfy the‬
‭requirements of shipping on multiple vendor-controlled platforms, compatibility with‬
‭community standards, and ensuring that the future commercial viability of Doom and Doom II‬
‭would be secured.‬

‭Rather than assume generic names for data fields, explicit naming for ID24 has been taken‬
‭in cases where a conflict is likely to occur. This is most pertinent in the DeHackEd features‬
‭that have been added, where source ports (and even the original Heretic) have taken to‬
‭calling additional flags fields “flags2”, “flags3”, etc. Naming such fields for ID24 at the code‬



‭and data level makes it explicit what functionality set these fields should be used for, and‬
‭avoids conflicting with prior or future functionality.‬

‭There are many standards over the years that take the assumption of the implementation‬
‭before it as a part of its standard. A primary example is UMAPINFO, which changes‬
‭behavior depending on game mode, and even relies on undocumented behavior on how an‬
‭episode number is resolved. Rather than assume a prior implementation, an explicit‬
‭complete implementation is defined and specced. This includes the JSON data level, which‬
‭have all been authored as reflections of data structures rather than a way to describe‬
‭modifying existing structures.‬

‭When creating a new feature and specification, an attempt was made to see if there were‬
‭suitable community standards. While some source ports have solutions for what has been‬
‭specced, there is nothing standard and widely adopted amongst a broad range of source‬
‭ports. These newly developed specifications will be the basis for any and all official content‬
‭that may or may not be commissioned in the future and as such have been developed to‬
‭replicate functionality that was already there, add anything required for this release, and‬
‭leave a path open for future development and iteration on these features and specifications.‬


