
‭JSON Lump formal specification version 1.0‬
‭A requirement to store data in JSON format has become needed. This document specifies‬
‭how any JSON formatted data must be described when inserted into a Doom WAD file.‬

‭Rather than just be a JSON document containing the data relevant to a given feature, it is‬
‭expected for verification and versioning purposes that any lump containing JSON data will‬
‭provide some common information that both the engine and toolsets can support. A standard‬
‭header is thus defined that any Doom source port can read and interpret to make base-level‬
‭decisions on.‬

‭JSON ISO specification‬
‭JSON lumps are expected to support the ISO/IEC 21778:2017 standard for JSON data. It is‬
‭expected to be strictly adhered to. Any fields that fall outside of the scope of that standard‬
‭(including comments) are to be considered an error and result in an invalid JSON document.‬

‭Identifying JSON lumps‬
‭What is and isn't a JSON lump at a name level is outside of the scope of this specification. It‬
‭is entirely up to the specifications for JSON-based lumps to define naming conventions for‬
‭those lumps.‬

‭Once you have the lump data in memory, a JSON lump must be identified solely by‬
‭attempting to parse it as a JSON document. Your JSON implementation must immediately‬
‭return a fail if it is not a correctly-formatted JSON document.‬

‭For lumps that have multiple existing types (ie binary formats, text, etc), JSON is to be‬
‭considered the first class citizen and must attempt to be parsed first.‬

‭Note that attempting to shortcut this requirement by searching for the first non-whitespace‬
‭character and matching it to '{' is not supported and is not to be implemented. Many binary‬
‭formats used by the Doom engine start off with little-endian values that can hit the binary‬
‭value of 123 that the '{' character is encoded at in both ASCII and UTF-8 standards. Either‬
‭attempt to parse a full JSON document, or only use the original handlers.‬

‭JSON structure‬
‭The root node of a JSON lump is required to have‬‭all‬‭of- and only-‬‭the values described‬
‭below. Any values encountered not specified in the below table are to be considered an error‬
‭condition and result in an invalid JSON document.‬

‭All values have a default of null. Any values not loaded thus resolve to null, and are to be‬
‭considered an error condition and result in an invalid JSON document.‬

‭Any values that do not conform to specified types are to be considered an error condition‬
‭and result in an invalid JSON document.‬

‭Any JSON data handler encountering a version higher than expected must consider it to be‬
‭an error condition and result in an invalid JSON document. Forward compatibility is not‬
‭supported through this requirement, only backward compatibility.‬

‭Name‬ ‭JSON type‬ ‭Description‬

‭type‬ ‭string‬ ‭The name of the type of data this lump contains. Used for‬
‭verification purposes at engine runtime; used by editors to‬
‭determine how to handle the lump.‬

‭This value must be lowercase; have one character minimum;‬
‭and consist of letters, numbers, underscores, and dashes‬
‭only. The regex string‬‭̂[a-z0-9_-]+$‬‭should thus result‬‭in‬
‭an exact match with the provided value.‬

‭version‬ ‭string‬ ‭The version for the specified type. Expected to take the‬
‭format of “<major>.<minor>.<revision>”. The regex string‬
‭̂(\d+)\.(\d+)\.(\d+)$‬‭should thus result in an exact‬
‭match and three groups with the provided value.‬

‭metadata‬ ‭object‬ ‭A data field designed to be used by editors. Its existence‬
‭must be verified at engine runtime; and its contents must be‬
‭ignored at engine runtime.‬

‭data‬ ‭object‬ ‭The data representing the specified type. The format of this‬
‭block is out of the scope of this document, and intended to be‬
‭defined exclusively by any data formats wanting to base‬
‭themselves on JSON. This object is thus used as the root‬
‭node for any custom JSON data handler, any handlers as‬
‭such must refer to the type of this object as‬‭root‬‭.‬‭Must not‬
‭be null.‬

‭metadata structure‬
‭While the metadata object must be ignored at runtime, the contents of the metadata object‬
‭must contain a few common values. Any tool parsing this block can thus rely on these fields‬
‭existing, and not need to deal with special-case handlers for the way other tools wish to‬
‭work.‬

‭Each field has no default value. Null is an acceptable default value for verification purposes.‬

‭Any metadata block not containing all of the following entries must be considered invalid‬

‭Any additional values not defined here are both valid and outside of the scope of this‬
‭document, and are to be considered “implementation defined” for the purposes of this‬
‭document.‬

‭Name‬ ‭JSON‬
‭type‬

‭Example‬ ‭Description‬

‭author‬ ‭string‬ ‭Ethan Watson‬ ‭The name(s) of the‬
‭author(s) of this lump.‬

‭timestamp‬ ‭string‬ ‭1993-12-10T00:30:00-06:00‬ ‭The timestamp representing‬
‭when this lump was last‬
‭modified, formatted to‬
‭RFC3339 specifications.‬
‭The example is a timestamp‬
‭representing roughly when‬
‭the Doom shareware‬
‭episode was first available‬
‭for the public to download.‬

‭application‬ ‭string‬ ‭DEU 5.21‬ ‭The name of the application‬
‭used to create this lump.‬
‭While it is strongly‬
‭recommended to use an‬
‭application and not‬
‭hand-editing JSON, if you‬
‭insist on hand-editing things‬
‭then by all means brag‬
‭about it here.‬

‭Versioning‬
‭The‬‭revision‬‭field of a version is meant primarily‬‭for bug fixes and alterations to a‬
‭published standard. Any additions or removals of features should be saved for a‬‭minor‬
‭version; however, it is up to the author’s discretion as to whether that is a big enough‬
‭functionality change to be considered a‬‭major‬‭version‬‭change.‬

‭Requirements of specifications based on the JSON Lump specification‬
‭Preferably at the top of your specification, you must define the following:‬

‭●‬ ‭JSON Lump version specification that your specification is based on‬
‭●‬ ‭The value that the‬‭type‬‭field must be set to‬
‭●‬ ‭The value that the‬‭version‬‭field must be set to‬
‭●‬ ‭A definition for a‬‭root‬‭object that is stored in the‬‭data‬‭field‬

‭Reference implementation details‬

‭API implementation‬
‭The entrypoint to the JSON handling API looks like:‬

‭jsonlumpresult_t M_ParseJSONLump(lumpindex_t lumpindex, const char*‬

‭lumptype, const JSONLumpVersion& maxversion, const JSONLumpFunc& parsefunc‬

‭);‬

‭Upon successfully validating the above specification,‬‭M_ParseJSONLump‬‭will then invoke‬
‭pasefunc‬‭with the node representing the data field.‬‭In general, it is invoked with a lambda‬
‭that captures a reference to an output value. This allows‬‭M_ParseJSONLump‬‭to provide error‬
‭reporting as a return value without resorting to exceptions. The closure created to capture‬
‭the reference is also quite small, and is effectively no more costly than invoking a virtual‬
‭method on a class.‬

‭JSONLumpVersion struct‬
‭The JSONLumpVersion struct contains numerical representations of the‬‭major‬‭,‬‭minor‬‭, and‬
‭revision‬‭fields. It also contains a‬‭devversion‬‭field.‬‭This is intended to be used‬
‭exclusively during development of a new revision of a feature. As it is not serialised‬
‭anywhere or specified in the standard, this value should never be relied on for a published‬
‭specification or data that relies on any given version of a specification.‬

